Harold's Simplex Tableau (Linear Optimization) Cheat Sheet

18 August 2025

How to Optimize using the Simplex Method					
Steps	1. Read the word problem at least 4 times				
	2.	Assign non-basic variables (x ₁ , x ₂ ,)			
	3.	List optimization function, z =, that will be maximized			
	4.	List inequalities (constraints)			
	5.	Add basic variables, also called slack variables, (s ₁ , s ₂ ,), to turn			
		inequalities into equations			
a. ≤ means s _n is positive (defa		a. \leq means s_n is positive (default)			
		 b. ≥ means s_n is negative (seldom used) 			
		c. Column has all zeros (0) except for one (1) for the slack variable			
	Organize the equation and inequalities into a matrix, with variables for				
		the columns			
	7.	Construct a simplex tableau corresponding to the system			
		a. Rows 1-n are the inequalities			
		b. Last row (indicator row) is the z equation solved to equal zero (0)			
	i. Example: if $z = 5x_1 + 7x_2$, then $-5x_1 - 7x_2 + z = 0$, or				
•		If the indicator row coefficients are all positive, then the problem is			
	solved, otherwise 9. Find pivot				
		a. Pivot Column is the most <u>negative</u> value in indicator row on bottom			
	 b. Pivot Row is the smallest <u>positive</u> ratio of pivot column coefficients by value on far right 				
	10. Pivot (perform matrix row operations) to create a new simplex tableau				
	a. Example: $R_1 = R_1 - 2R_2$				
	b. All values in column should be turned into zeros (0) except the pivot element (like the Identity matrix)				
	c. Pivot element should be turned into one (1) using division				
		afterwards to avoid working with fractions			
		d. Column b should always be positive when maximizing			
	 Repeat steps 8 - 10 until no more negatives in the indicator row on bottom 				
	12. Maximum objective function value is in the simplex tableau's bottom ri				
		corner			

(

Objective Function:

$$z = x_1 + 2x_2 - x_3$$

Subject To:

$$2x_1 + x_2 + x_3 \le 14$$

$$4x_1 + 2x_2 + 3x_3 \le 28$$

$$2x_1 + 5x_2 + 5x_3 \le 30$$

$$x_1 \ge 0$$
; $x_2 \ge 0$; $x_3 \ge 0$

Simplex Tableau

Adding slack variables gives:

$$2x_1 + x_2 + x_3 + s_1 = 14$$

$$4x_1 + 2x_2 + 3x_3 + s_2 = 28$$

$$2x_1 + 5x_2 + 5x_3 + s_3 = 30$$

where all variables $x_n \ge 0$ (e.g., not negative)

Simplex Tableau before Pivoting:

$$R_1 \begin{bmatrix} x_1 & x_2 & x_3 & s_1 & s_2 & s_3 & z & | & b \\ 2 & 1 & 1 & 1 & 0 & 0 & 0 & | & 14 \\ 4 & 2 & 3 & 0 & 1 & 0 & 0 & | & 28 \\ R_3 & - & & & & & & & & & & & \\ R_4 & - & - & - & - & - & - & - & - & - \\ -1 & -2 & 1 & 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

Pivot Determination:

The -2 is the most negative on the bottom row, so pivot column is 2.

Ratios are row 1: 14/1 = 14, row 2: 28/2 = 14, row 3: 30/5 = 6.

The smallest positive ratio is 6.

So, the pivot is at column 2, row 3 = 5.

After Pivot #1

Row Operations:

Pivot element is Col 2, Row 3.

$$R_1 = 5 R_1 - R_3$$

$$R_2 = 5 R_2 - 2 R_3$$

$$R_4 = 5 R_4 + 2 R_3$$

$$R_3 = (1/5) R_3$$

Simplex Tableau after Pivot #1:

$$R_{1} \begin{bmatrix} x_{1} & x_{2} & x_{3} & s_{1} & s_{2} & s_{3} & z & | & b \\ 8 & 0 & 0 & 5 & 0 & -1 & 0 & | & 40 \\ 16 & 0 & 5 & 0 & 5 & -2 & 0 & | & 80 \\ 2 & & & & & & \\ R_{3} & & & & \\ R_{4} & & & & & \\ \hline R_{4} & & & & & \\ \end{bmatrix}$$

Pivot Determination:

The -1 is the most negative on the bottom row, so pivot column is 1.

Ratios are row 1: 40/8 = 5, row 2: 80/16 = 5, row 3: 6/(2/5) = 15.

The smallest positive ratio is 5.

So, the pivot is at column 1, row 1 = 8. Row 2 also works.

After Pivot #2

Next Pivot element is Col 1, Row 2.

$$R_1 = 2 R_1 - R_2$$

$$R_3 = 16 R_3 - (2/5) R_2$$

$$R_4 = 16 R_4 + R_2$$

$$R_2 = (1/16) R_2$$

Final Tableau after Pivot #2:

$$R_{1} \begin{bmatrix} x_{1} & x_{2} & x_{3} & s_{1} & s_{2} & s_{3} & z & | & b \\ 1 & 0 & 0 & \frac{5}{8} & -5 & 0 & -\frac{1}{8} & | & 5 \\ 0 & 0 & 1 & -2 & 1 & 0 & 0 & | & 0 \\ R_{3} & 0 & 1 & -\frac{1}{4} & 0 & \frac{1}{4} & 0 & | & 4 \\ - & - & - & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & 3 & \frac{1}{8} & 0 & \frac{3}{8} & 0 & | & \mathbf{B} \end{bmatrix}$$

Note: All indicators in bottom row are now zero or larger.

13 is not an indicator. It is the maximum solution.

Basic	$x_1 = 5$	Choose 5 x ₁ s	7//
Feasible	$x_2 = 4$	Choose 4 x ₂ s	51=0
Solution	$x_3 = 0$	Choose no x₃s	6
	$s_1 = 0$		
	$s_2 = 0$		s2=0
	$s_3 = 0$		4
	z = 13	Objective function value of 13.	x1=0
			s3=0
	Since all slack variables $s_n \ge 0$, this solution is optimal.		x2=0
			TA 2 4 6 G 8

Sources:

- https://math.uww.edu/~mcfarlat/s-prob.htm
- http://simplex.tode.cz/en/#steps