Harold's Series Convergence Tests Cheat Sheet

22 September 2025

Divergence or nth Term Test

Series: $\sum_{n=1}^{\infty} a_n$

Condition(s) of Convergence:

None. This test cannot be used to show convergence.

Condition(s) of Divergence:

$$\lim_{n\to\infty}a_n\neq 0$$

Geometric Series Test

Series: $\sum_{n=0}^{\infty} ar^n$

Condition of Convergence:

Sum:
$$S = \lim_{n \to \infty} \frac{a(1-r^n)}{1-r} = \frac{a}{1-r}$$

Condition of Divergence:

$$|r| \ge 1$$

p - Series Test

Series: $\sum_{n=1}^{\infty} \frac{1}{n^p}$

Condition of Convergence:

Condition of Divergence:

$$p \leq 1$$

4 **Alternating Series Test**

Series: $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$

Condition of Convergence:

$$0 < a_{n+1} \le a_n$$

$$\lim_{n \to \infty} a_n = 0$$

 $\lim_{n\to\infty} a_n = 0$ or if $\sum_{n=0}^{\infty} |a_n|$ is convergent

Condition of Divergence:

None. This test cannot be used to show divergence.

* Remainder: $|R_n| \le a_{n+1}$

Integral Test

Series: $\sum_{n=1}^{\infty} a_n$ when $a_n = f(n) \ge 0$ and f(n) is continuous, positive and decreasing

Condition of Convergence:

$$\int_{1}^{\infty} f(x) dx \text{ converges}$$

Condition of Divergence: $\int_{1}^{\infty} f(x)dx \text{ diverges}$

$$\int_{1}^{\infty} f(x) dx$$
 diverges

* Remainder: $0 < R_N \le \int_N^\infty f(x) dx$

Ratio Test

Series: $\sum_{n=1}^{\infty} a_n$

Condition of Convergence:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$

Condition of Divergence:

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$

* Test inconclusive if

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$

7 **Root Test**

Series: $\sum_{n=1}^{\infty} a_n$

Condition of Convergence:

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1$$

Condition of Divergence:

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} > 1$$

* Test inconclusive if

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$$

Direct Comparison Test

 $(a_n, b_n > 0)$

Series: $\sum_{n=1}^{\infty} a_n$

Condition of Convergence:

$$0 < a_n \le b_n$$
 and $\sum_{n=0}^{\infty} b_n$ is absolutely convergent

Condition of Divergence:

$$\begin{array}{c} 0 < b_n \leq a_n \\ \text{and } \sum_{n=0}^{\infty} b_n \text{ diverges} \end{array}$$

Limit Comparison Test

$$(\{a_n\}, \{b_n\} > 0)$$

Series: $\sum_{n=1}^{\infty} a_n$

Condition of Convergence:
$$\lim_{n\to\infty} \frac{a_n}{b_n} = L > 0$$

and $\sum_{n=0}^{\infty} b_n$ converges

Condition of Divergence:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=L>0$$
 and $\sum_{n=0}^{\infty}b_n$ diverges

NOTE: These tests prove convergence and divergence, not

the actual limit L or sum S.

Sequence:
$$\lim_{n\to\infty} a_n = L$$

 $(a_n, a_{n+1}, a_{n+2}, ...)$

Series:
$$\sum_{n=1}^{\infty} a_n = \mathbf{S}$$

Series:
$$\sum_{n=1}^{\infty} a_n = \mathbf{S}$$
 $(a_n + a_{n+1} + a_{n+2} + \cdots)$

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$$

10

Telescoping Series Test

Series: $\sum_{n=1}^{\infty} (a_{n+1} - a_n)$

Condition of Convergence: $\lim a_n = L$

Condition of Divergence: None

NOTE:

- 1) May need to reformat with partial fraction expansion or log rules.
- 2) Expand first 5 terms. n=1,2,3,4,5.
- 3) Cancel duplicates.
- 4) Determine limit L by taking the limit as $n \to \infty$.
- 5) Sum: $S = a_1 L$

Choosing a Convergence Test for Infinite Series

Courtesy David J. Manuel

