Harold's Physics of Projectiles Cheat Sheet 26 September 2024 | The Classic Cannonball Problem | | | | | |--------------------------------|--|--|--|--| | Diagram | y velocity (VI) g angle (θ) | $V_{V} = V_{V} = V_{V} + V_{V$ | | | | Givens | $v = 40 \ {}^m/_S$
$\theta = 30 \ {}^\circ$ Degrees inclined from the horizontal | | | | | | Horizontal (x-axis) | Vertical (y-axis) | | | | U nknowns | 1 How far is it at time t ? $(x(t))$ 4 How far will it land? (x_{max}) | 2 How high is it at time t ? $(y(t))$
5 How high will it go? (y_{max}) | | | | | $oxed{3}$ When will it land? (t_{max}) | | | | | Observations | Subscripts are dimensions, time, or both. Examples: v_x is the velocity in the x direction. x₀ is the initial horizontal position, or horizontal position at time = 0 s. v_{y0} is the initial velocity in the y direction (vertical) Horizontal and vertical dimensions are orthogonal (independent from one another). Assume no wind resistance (drag). If we factor in wind resistance, then differential calculus is needed. The cannonball will reach its highest point exactly halfway through its journey. [t₁ and x₁] | | | | | | $x_0 = 0, x_1 = \frac{1}{2}x_2, x_2 = x_{max}$ $v_x = v_{x0} = v_{x1} = v_{x2} = constant$ $a_x = 0$ | $\begin{vmatrix} y_0 = 0, & y_1 = y_{max}, & y_2 = 0 \\ v_{y0} = ?, & v_{y1} = 0, & v_{y2} = -v_{y0} \\ a_y = \mathbf{g} = -9.8 & m/_{S^2} \end{vmatrix}$ | | | | | $t_0 = 0, t_1 = \frac{1}{2}t_2, t_2 = t_{max}$ | | | | | Equations | $v_{x} = v_{x0} = v_{x1} = v_{x2} = constant$ $a_{x} = 0$ $t_{0} = 0, t_{1} = 0$ $x = x_{0} + v_{x0}t + \frac{1}{2}a_{x}t^{2}$ | $y = y_0 + v_{y0}t + \frac{1}{2}a_yt^2$ | | | | | $v_{x} = \boldsymbol{v}\cos(\theta)$ | $v_y = \boldsymbol{v} \sin(\theta)$ | | | We are now ready to solve for all 5 unknowns in the order 1, 2, 3, 4, 5. First, determine the distance formulas. | | Horizontal (x-axis) | Vertical (y-axis) | |--------------------|--|---| | Solve | $x = \frac{x_0 + v_{x0}t + \frac{1}{2}a_x t^2}{x = v_{x0}t}$ | $y = \frac{y_0 + v_{y0}t - \frac{1}{2}gt^2}{y = v_{y0}t - \frac{1}{2}gt^2}$ | | | $x(t) = v_{x0}t = v\cos(\theta) t$ | $y(t) = v\sin(\theta) t - \frac{1}{2}gt^2$ | | S ubstitute | $x(t) = 40\cos(30^\circ)t \ m$ | $y(t) = 40 \sin(30^{\circ}) t - 4.9 t^{2} m$ | | Box Answer | $1 x(t) = 40 \cos(30^\circ) t m$ | $y(t) = 40 \sin(30^{\circ}) t - 4.9 t^{2} m$ | | | Distance travelled | Height travelled | Next, determine time. | | Horizontal (x-axis) | Vertical (y-axis) | |--------------------|---|---| | Solve | | $y(t_0) = y_0 = 0 = v_{y0}t - \frac{1}{2}gt^2$ | | | | $(t)\left(v_{y0} - \frac{1}{2}gt\right) = 0$ $t = t_0 = 0, t = t_2 = \frac{2v_{y0}}{g}$ $t_{max} = t_2 = \frac{2v_{y0}}{g} = \frac{2(v\sin(\theta))}{g}$ | | | | $t = t_0 = 0, t = t_2 = \frac{2v_{y0}}{g}$ | | | | $t_{max} = t_2 = \frac{2v_{y0}}{g} = \frac{2(v\sin(\theta))}{g}$ | | S ubstitute | $t_{max} = \frac{2(40 \sin(30^\circ))}{9.8} = 4.08 s$ | | | Box Answer | 3 t_{max} | x = 4.08 s | | | Time the cannot | nball was in the air | Finally, determine the farthest distances. | | Horizontal (x-axis) | Vertical (y-axis) | |--------------------|--|--| | S olve | $x_{max} = v_{x0} t_{max} = \boldsymbol{v} \cos(\theta) t_{max}$ | $y_{max} = y(t_1) = y\left(\frac{1}{2}t_{max}\right)$ $y_{max} = 40\sin(30^\circ)\left(\frac{1}{2}t_{max}\right) - 4.9\left(\frac{1}{2}t_{max}\right)^2$ | | S ubstitute | $x_{max} = 40 \cos(30^{\circ}) 4.08 = 141.3 m$ | $y_{max} = 40 \sin(30^{\circ}) \left(\frac{4.08}{2}\right) - 4.9 \left(\frac{4.08}{2}\right)^{2}$ $= 20.41 m$ | | Box Answer | $x_{max} = 141.3 m$ Farthest distance the cannonball travelled | $y_{max} = 20.41 m$ Highest distance the cannonball travelled |