Harold's Finances Cheat Sheet 8 May 2024

Variables

Name	Variable Descriptions
Variables	$PV = \text{Original amount, principle, or present value}$ $FV = \text{Amount after time t, future value, or face value}$ $r = \text{Annual interest rate, rate of growth or loss (15\% = 0.15)}$ $k = \text{Number of periods or times per year (quarterly is k = 4)}$ $t = \text{Number of periods or compoundings } (n = kt)$ $i = \text{Effective interest rate per period } \left(i = \frac{r}{k}\right)$ $x = \text{Number of payment already made}$ $e = \text{Euler's number (~2.71828 18284 59045)}$ $PMT = R = \text{Equal regular payments towards a loan or}$ $Equal periodic payments from an annuity$ $BAL = B = \text{Remaining balance on a loan or annuity}$ $DIS = \text{Discount on a U.S. Treasury bill (T - bill)}$ $APY = \text{Annual Percentage Yield (APY) or Effective Interest Rate}$

One-Time Investments

Simple Interest	Discrete	Continuous
Simple Interest	I = PVrt	
Future Value	FV = PV + I $FV = PV + PV + I$	
	FV = PV + PVTt $FV = PV(1 + rt)$	
Present Value	$PV = \frac{FV}{(1+rt)}$	NA
	$PV = FV(1+rt)^{-1}$	
	DIS = FVrt	
T-Bill	Price = FV - DIS = FV(1 - rt)	
	Effective Rate = $\frac{DIS}{PVt} \bullet 100 \%$	
Compounded Interest	Discrete	Continuous
Compounded Interest	$I = FV - PV$ $I = PV((1+r)^{t} - 1)$	$I = PV(e^{rt} - 1)$
Future Value	$FV = PV \left(1 + \frac{r}{k}\right)^{kt}$ If $k = 1$ (appually) then	$FV = PVe^{rt}$
	$FV = PV(1+r)^t$	

Present Value	$PV = \frac{FV}{\left(1 + \left(\frac{r}{k}\right)\right)^{kt}} = PV\left(1 + \left(\frac{r}{k}\right)\right)^{-kt}$ If $k = 1$ (annually) then $PV = \frac{FV}{(1+r)^t} = FV(1+r)^{-t}$	$PV = \frac{FV}{e^{rt}}$ $PV = FVe^{-rt}$
Annual Interest Rate	$r = k \left[\left(\frac{FV}{PV} \right)^{-kt} - 1 \right] \bullet 100 \%$	$r = \frac{1}{t} ln \left(\frac{FV}{PV}\right)$
Annual Percentage Yield (APY) or Effective Interest Rate	$\% APY = \left[\left(1 + \left(\frac{r}{k} \right) \right)^{kt} - 1 \right] \bullet 100 \%$ $APY = r_E = (1+i)^k - 1$	$i = ln\left(\frac{FV}{PV}\right)$

Regular Payments

Compounded Interest	Future Value	Present Value
Number of Periods or Compoundings	n = kt	
Effective Interest Rate Per Period	$i = \frac{r}{k}$	
Cost of Loan (Amount You Paid)	$Total_{Paid} = ktPMT$	
Interest You Paid	I _{Paid}	= ktPMT - PV
Value of an Ordinary Annuity (PMT at end of period)	$FV = PMT \left[\frac{\left(\left(1 + \left(\frac{r}{k} \right) \right)^{kt} - 1 \right)}{\left(\frac{r}{k} \right)} \right]$	$PV = PMT \left[\frac{\left(1 - \left(1 + \left(\frac{r}{k}\right)\right)^{-kt}\right)}{\left(\frac{r}{k}\right)} \right]$
	$FV = PMT\left[\frac{((1+i)^n - 1)}{i}\right]$	$PV = PMT\left[\frac{(1-(1+i)^{-n})}{i}\right]$
Value of an Annuity Due (PMT at beginning of period)	$FV = PMT \left[\frac{\left(\left(1 + \left(\frac{r}{k} \right) \right)^{kt+1} - 1 \right)}{\left(\frac{r}{k} \right)} \right] - PMT$	$PV = PMT + PMT \left[\frac{\left(1 - \left(1 + \left(\frac{r}{k}\right)\right)^{-kt+1}\right)}{\left(\frac{r}{k}\right)} \right]$
	$FV = PMT\left[\frac{\left((1+i)^{n+1}-1\right)}{i}\right] - PMT$	$PV = PMT + PMT\left[\frac{(1-(1+i)^{-(n-1)})}{i}\right]$
Amortization Payment Amount	$PMT = FV \left[\frac{\left(\left(1 + \left(\frac{r}{k} \right) \right)^{kt} - 1 \right)}{\left(\frac{r}{k} \right)} \right]^{-1}$	$PMT = PV \left[\frac{\left(1 - \left(1 + \left(\frac{r}{k}\right)\right)^{-kt}\right)}{\left(\frac{r}{k}\right)} \right]^{-1}$
	$PMT = FV\left[\frac{i}{((1+i)^{n}-1)}\right]$	$PMT = PV\left[\frac{i}{(1-(1+i)^{-n})}\right]$
Remaining Balance	NA	$BAL = PMT\left[\frac{\left(1 - \left(1 + \left(\frac{r}{k}\right)\right)^{-kt + x}\right)}{\left(\frac{r}{k}\right)}\right]$
	NA	$BAL = PMT\left[\frac{(1-(1+i)^{-(n-x)})}{i}\right]$

Examples

Scenario	Calculations	
Savings Account: PV = \$100 r = 8% = 0.08 k = 4 (quarterly) t = 1 year	If $k = 1$, $FV = \$108.00 (+0¢)$ Annually If $k = 4$, $FV = \$108.24 (+24¢)$ Quarterly If $k = 12$, $FV = \$108.30 (+6¢)$ Monthly If $k = 52$, $FV = \$108.32 (+2¢)$ Weekly If $k = 365$, $FV = \$108.33 (+1¢)$ Daily If $k \to \infty$, $FV = \$108.33 (+0¢)$ Continuously	
House Mortgage Payment: PV = \$300,000 (home loan) PMT = Equal periodic payments r = 3.5% = 0.035 k = 12 (monthly) t = 30 years	$PMT = PV \left[\frac{\binom{r}{k}}{\left(1 - \left(1 + \binom{r}{k}\right)^{-kt}\right)} \right]$ $PMT = \$300,000 \left[\frac{\left(\frac{0.035}{12}\right)}{\left(1 - \left(1 + \left(\frac{0.035}{12}\right)\right)^{-(12)(30)}\right)} \right]$ $PMT = \$1.347.13/month$	
Loan Cost Analysis	$\frac{t = 30 \text{ years:}}{\text{Cost of loan} = ktPMT = (12)(30)(\$1,347.13) = \$484,966.80}$ Interest paid = $ktPMT - PV = \$484,966.80 - \$300,000 =$ $\frac{t = 15 \text{ years:}}{\text{Cost of loan} = ktPMT = (12)(15)(\$2,144.65) = \$386,037.00}$ Interest paid = $ktPMT - PV = \$386,037.00 - \$300,000 =$ $\$86,037.00$	