Harold's Finances

Cheat Sheet

8 May 2024

Variables

Name	Variable Descriptions
Variables	$P V=$ Original amount, principle, or present value $F V=$ Amount after time t, future value, or face value $r=A n n u a l ~ i n t e r e s t ~ r a t e, ~ r a t e ~ o f ~ g r o w t h ~ o r ~ l o s s ~(15 \% ~=~ 0.15) ~$ $k=$ Number of periods or times per year (quarterly is $k=4)$ $t=$ Number of years $n=$ Number of periods or compoundings $(n=k t)$ $i=$ Effective interest rate per period $\left(i=\frac{r}{k}\right)$ $x=$ Number of payment already made $e=$ Euler's number $(\sim 2.718281828459045 \ldots)$ $P M T=R=$ Equal regular payments towards a loan or Equal periodic payments from an annuity $B A L=B=$ Remaining balance on a loan or annuity $D I S=$ Discount on a U.S. Treasury bill (T - bill) $A P Y=$ Annual Percentage Yield (APY) or Effective Interest Rate

One-Time Investments

Simple Interest	Discrete	Continuous
Simple Interest	$I=P V r t$	
Future Value	$\begin{gathered} F V=P V+I \\ F V=P V+P V r t \\ F V=P V(1+r t) \end{gathered}$	
Present Value	$\begin{gathered} P V=\frac{F V}{(1+r t)} \\ P V=F V(1+r t)^{-1} \end{gathered}$	NA
T-Bill	$\begin{gathered} D I S=F V r t \\ \text { Price }=F V-D I S=F V(1-r t) \\ \text { Effective Rate }=\frac{D I S}{P V t} \bullet 100 \% \end{gathered}$	
Compounded Interest	Discrete	Continuous
Compounded Interest	$\begin{gathered} I=F V-P V \\ I=P V\left((1+r)^{t}-1\right) \end{gathered}$	$I=P V\left(e^{r t}-1\right)$
Future Value	$F V=P V\left(1+\frac{r}{k}\right)^{k t}$ If $k=1$ (annually) then $F V=P V(1+r)^{t}$	$F V=P V e^{r t}$

Present Value	$P V=\frac{F V}{\left(1+\left(\frac{r}{k}\right)\right)^{k t}}=P V\left(1+\left(\frac{r}{k}\right)\right)^{-k t}$ If $k=1$ (annually) then $P V=\frac{F V}{(1+r)^{t}}=F V(1+r)^{-t}$	$\begin{gathered} P V=\frac{F V}{e^{r t}} \\ P V=F V e^{-r t} \end{gathered}$
Annual Interest Rate	$r=k\left[\left(\frac{F V}{P V}\right)^{-k t}-1\right] \cdot 100 \%$	$r=\frac{1}{t} \ln \left(\frac{F V}{P V}\right)$
Annual Percentage Yield (APY) or Effective Interest Rate	$\begin{gathered} \% A P Y=\left[\left(1+\left(\frac{r}{k}\right)\right)^{k t}-1\right] \cdot 100 \% \\ A P Y=r_{E}=(1+i)^{k}-1 \end{gathered}$	$i=\ln \left(\frac{F V}{P V}\right)$

Regular Payments

Compounded Interest	Future Value	Present Value
Number of Periods or Compoundings	$n=k t$	
Effective Interest Rate Per Period	$i=\frac{r}{k}$	
Cost of Loan (Amount You Paid)	Total $_{\text {Paid }}=k t P M T$	
Interest You Paid	$I_{\text {Paid }}=k t P M T-P V$	
Value of an Ordinary Annuity (PMT at end of period)	$F V=P M T\left[\frac{\left(\left(1+\left(\frac{r}{k}\right)\right)^{k t}-1\right)}{\left(\frac{r}{k}\right)}\right]$	$P V=P M T\left[\frac{\left(1-\left(1+\left(\frac{r}{k}\right)\right)^{-k t}\right)}{\left(\frac{r}{k}\right)}\right]$
	$F V=P M T\left[\frac{\left((1+i)^{n}-1\right)}{i}\right]$	$P V=P M T\left[\frac{\left(1-(1+i)^{-n}\right)}{i}\right]$
Value of an Annuity Due (PMT at beginning of period)	$F V=P M T\left[\frac{\left(\left(1+\left(\frac{r}{k}\right)\right)^{k t+1}-1\right)}{\left(\frac{r}{k}\right)}\right]-P M T$	$P V=P M T+P M T\left[\frac{\left(1-\left(1+\left(\frac{r}{k}\right)\right)^{-k t+1}\right)}{\left(\frac{r}{k}\right)}\right]$
	$F V=P M T\left[\frac{\left((1+i)^{n+1}-1\right)}{i}\right]-P M T$	$P V=P M T+P M T\left[\frac{\left(1-(1+i)^{-(n-1)}\right.}{i}\right]$
Amortization Payment Amount	$P M T=F V\left[\frac{\left(\left(1+\left(\frac{r}{k}\right)\right)^{k t}-1\right)}{\left(\frac{r}{k}\right)}\right]^{-1}$	$P M T=P V\left[\frac{\left(1-\left(1+\left(\frac{r}{k}\right)\right)^{-k t}\right)}{\left(\frac{r}{k}\right)}\right]^{-1}$
	$P M T=F V\left[\frac{i}{\left((1+i)^{n}-1\right)}\right]$	$P M T=P V\left[\frac{i}{\left(1-(1+i)^{-n}\right)}\right]$
Remaining Balance	NA	$B A L=P M T\left[\frac{\left(1-\left(1+\left(\frac{r}{k}\right)\right)^{-k t+x}\right)}{\left(\frac{r}{k}\right)}\right]$
	NA	$B A L=P M T\left[\frac{\left(1-(1+i)^{-(n-x)}\right)}{i}\right]$

Examples

Scenario	Calculations
Savings Account: $\begin{aligned} & P V=\$ 100 \\ & r=8 \%=0.08 \\ & k=4 \text { (quarterly) } \\ & t=1 \text { year } \end{aligned}$	If $k=1, \quad F V=\$ 108.00(+0 \$)$ Annually If $k=4, \quad F V=\$ 108.24(+24 \Phi)$ Quarterly If $k=12, \quad F V=\$ 108.30(+6 \$)$ Monthly If $k=52, \quad F V=\$ 108.32(+2 \Phi)$ Weekly If $k=365, F V=\$ 108.33(+1 \$)$ Daily If $k \rightarrow \infty, \quad F V=\$ 108.33(+0 \$)$ Continuously
House Mortgage Payment: $P V=\$ 300,000$ (home loan) $P M T=$ Equal periodic payments $r=3.5 \%=0.035$ $k=12$ (monthly) $t=30$ years	$\begin{gathered} P M T=P V\left[\frac{\left(\frac{r}{k}\right)}{\left(1-\left(1+\left(\frac{r}{k}\right)\right)^{-k t}\right)}\right] \\ P M T=\$ 300,000\left[\frac{\left(\frac{0.035}{12}\right)}{\left(1-\left(1+\left(\frac{0.035}{12}\right)\right)^{-(12)(30)}\right)}\right] \\ P M T=\$ 1,347.13 / \text { month } \end{gathered}$
Loan Cost Analysis	```\(t=30\) years: Cost of loan \(=k t P M T=(12)(30)(\$ 1,347.13)=\$ 484,966.80\) Interest paid \(=k t P M T-P V=\$ 484,966.80-\$ 300,000=\) \$184,966.80 \(t=15\) years: Cost of loan \(=k t P M T=(12)(15)(\$ 2,144.65)=\$ 386,037.00\) Interest paid \(=k t P M T-P V=\$ 386,037.00-\$ 300,000=\) \$86,037.00```

