Harold's Calculus Cheat Sheet

22 September 2025

Limits & Continuity

Definition of Limit

Let f be a function defined on an open interval containing c and let L be a real number. The statement:

$$\lim_{x\to c} f(x) = L$$

means that for each $\epsilon > 0$ there exists a $\delta > 0$ such that

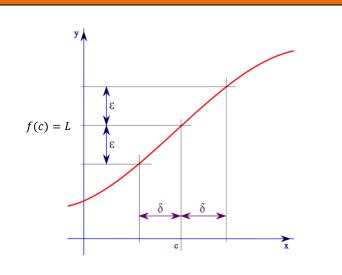
if
$$|x - c| < \delta$$
,
then $|f(x) - L| < \epsilon$

Tip:

Direct substitution: Plug in f(c) and see if it provides a legal answer. If so, then L = f(c).

The Existence of a Limit

The limit of f(x) as x approaches c is L if and only if:



$$\lim_{x \to c^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to c^{+}} f(x) = L$$

(Bonus if $\lim_{x=c} f(x) = f(c) = L$, but not required.)

Definition of Continuity

A function f is continuous at c if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|x - c| < \delta$ and $|f(x) - f(c)| < \varepsilon$.

Tip:

Rearrange |f(x) - f(c)| to have |(x - c)| as a factor. Since $|x - c| < \delta$ we can find an equation that relates both δ and ε together.

Prove that $f(x) = x^2 - 1$ is a continuous function.

$$|f(x) - f(c)| < \epsilon$$

$$= |(x^2 - 1) - (c^2 - 1)| < \epsilon$$

$$= |x^2 - 1 - c^2 + 1| < \epsilon$$

$$= |x^2 - c^2| < \epsilon$$

$$= |(x + c) \cdot (x - c)| < \epsilon$$

$$= |(x + c)| \cdot |(x - c)| < \epsilon$$

$$= |x + c| \cdot |x - c| < \epsilon$$

Since $|x + c| \le |2c|$ (worst-case scenario) = $|2c| \cdot |x - c| < \varepsilon$ = $|2c| \delta < \varepsilon$

So, given $\varepsilon>0$, we can **choose** $\boldsymbol{\delta}=\left|\frac{1}{2c}\right|\varepsilon>\mathbf{0}$ in the Definition of Continuity. So, substituting the chosen δ for |x-c| we get:

$$|f(x) - f(c)| \le |2c| \left(\left| \frac{1}{2c} \right| \varepsilon \right) = \varepsilon$$

Since both conditions are met, f(x) is continuous.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

Two Special Trig Limits

Derivative Notation				
Definitions of a Derivative of a Function (Slope Function / Difference Quotient)	$f'(x) = \lim_{h \to 0} \frac{f(x+1)}{x^{2}}$ $f'(x) = \lim_{h \to 0} \frac{f(x+1)}{x^{2}}$ $f'(c) = \lim_{x \to c} \frac{f(x)}{x}$	$\frac{h}{h}$ $\frac{1-f(x-h)}{2h}$	f(x+h) = y = y = y = y = y = y = y = y = y =	f(x) $f(x+h) - f(x)$ $x+h$
Second Symmetric Derivative of a Function (Concavity Function)	$f''(x) = \lim_{h \to 0} \frac{f'(x+h)}{h^2}$ $= \lim_{h \to 0} \frac{f(x+h) - 2f(x+h)}{h^2}$	$-\frac{(x)+f(x-h)}{2}$		ncave Up
First Derivative Notation	$y' = \frac{dy}{dx}$	$f'(x) = \frac{d}{dx}f(x)$	$\dot{x} = \frac{dx}{dt}$	$D_x[y]$
Second Derivative Notation	$y' = \frac{dy}{dx}$ $y'' = \frac{d^2y}{dx^2}$	$f''(x) = \frac{d^2}{dx^2}f(x)$	$(x) \qquad \ddot{x} = \frac{d^2x}{dt^2}$	$D_x^2 f(x)$
n th Derivative Notation	$y^{(n)} = \frac{d^n y}{dx^n}$	$f^{(n)}(x) = \frac{d^n}{dx^n} f$	$ \dot{x} = \frac{dx}{dt} (x) \qquad \ddot{x} = \frac{d^2x}{dt^2} f(x) \qquad \ddot{x} = \frac{d^3x}{dt^3} $	$D_x^n f(x)$

Common Derivatives	(See Cengage Learning <u>1-Page Calculus Formulas</u>)
1. Constant Rule	$\frac{d}{dx}[c] = 0$
2. Constant Multiple Rule	$\frac{d}{dx}[cf(x)] = cf'(x)$
3. Sum and Difference Rule	$\frac{d}{dx}[f \pm g] = f' \pm g'$
4. Product Rule	$\frac{d}{dx}[fg] = fg' + gf'$
5. Quotient Rule	$\left \frac{d}{dx} \left[\frac{f}{g} \right] \right = \frac{gf' - fg'}{g^2}$
	$\frac{d}{dx}[(f \circ g)(x)] = \frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$
6. Chain Rule	$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$

7. Power Rule	$\frac{d}{dx}[x^n] = nx^{n-1}$	$\frac{d}{dx}[cx^n] = ncx^{n-1}$
$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$	(Can be used for roots if <i>n</i> is a fraction.)	
8. Power Rule for <i>x</i>	$\frac{d}{dx}[x] = 1 (Think x = x^1 \text{ an})$	$dx^0 = 1)$
9. Power Rule w\Chain Rule	$\frac{d}{dx}[f(x)^n] = nf(x)^{n-1} f'(x)$	
10. Power Rule for Roots	$\frac{d}{dx}\left[\sqrt{x}\right] = \frac{d}{dx}\left[x^{\frac{1}{2}}\right] = \frac{1}{2\sqrt{x}}$	
11. Power Rule for Roots w\Chain Rule	$\frac{d}{dx}[f(x)^n] = nf(x)^{n-1}f'(x)$ $\frac{d}{dx}[\sqrt{x}] = \frac{d}{dx}\left[x^{\frac{1}{2}}\right] = \frac{1}{2\sqrt{x}}$ $\frac{d}{dx}\left[\sqrt[n]{f(x)}\right] = \frac{1}{n\left(\sqrt[n]{f(x)}\right)^{n-1}}$	f'(x)
12. Absolute Value	$\frac{d}{dx}[x] = \frac{x}{ x }$ $\frac{d}{dx}[e^x] = e^x$ $\frac{d}{dx}[e^{f(x)}] = e^{f(x)}f'(x)$ $\frac{d}{dx}[a^x] = (\ln a) a^x$ $\frac{d}{dx}[a^{f(x)}] = (\ln a) a^{f(x)} f'(x)$	
13. Natural Exponent	$\frac{d}{dx}[e^x] = e^x$	
14. Natural Exponent w\Chain Rule	$\frac{d}{dx} [e^{f(x)}] = e^{f(x)} f'(x)$	
15. Exponential Rule	$\frac{d}{dx}[a^x] = (\ln a) a^x$	
16. Exponential Rule w\Chain Rule	$\frac{d}{dx}[a^{f(x)}] = (\ln a) a^{f(x)} f'(x)$)
17. Natural Logarithm	$\left \frac{1}{dx} [\ln x] \right = \frac{1}{x}, x > 0$	
18. Natural Logarithm w\Chain Rule	$\frac{d}{dx}[\ln f(x)] = \frac{1}{f(x)} \cdot f'(x)$	
19. Logarithm	$\frac{d}{dx}[\ln x] = \frac{1}{x}, x \neq 0$ $\frac{d}{dx}[\ln f(x)] = \frac{1}{f(x)} \cdot f'(x)$ $\frac{d}{dx}[\log_a x] = \frac{1}{x \ln(a)}, x > 0$ $\frac{d}{dx}[\log_a x] = \frac{1}{x \ln(a)}, x \neq 0$)
20. Logarithm w\Chain Rule	$\frac{d}{dx}[\log_a f(x)] = \frac{1}{\ln x} \cdot \frac{f'(x)}{f(x)}$	
21. Sine	$\frac{d}{dx}[\sin(x)] = \cos(x)$	
22. Cosine	$\frac{d}{dx}[\cos(x)] = -\sin(x)$	
23. Tangent	$\frac{d}{dx}[tan(x)] = sec^2(x)$	
24. Cotangent	$\left \frac{1}{dx} [cot(x)] \right = -csc^2(x)$	
25. Secant	$\frac{d}{dx}[sec(x)] = sec(x) \tan(x)$	
26. Cosecant	$\frac{d}{dx}[csc(x)] = -csc(x)\cot(x)$)

27. Arcsine	$\frac{d}{dx}[\sin^{-1}(x)] = \frac{1}{\sqrt{1-x^2}}$
28. Arccosine	$\frac{d}{dx}[\cos^{-1}(x)] = \frac{-1}{\sqrt{1-x^2}}$
29. Arctangent	$\frac{d}{dx}[tan^{-1}(x)] = \frac{1}{1+x^2}$
30. Arccotangent	$\frac{d}{dx}[\cot^{-1}(x)] = \frac{-1}{1+x^2}$
31. Arcsecant	$\frac{d}{dx}[sec^{-1}(x)] = \frac{1}{ x \sqrt{x^2 - 1}}$
32. Arccosecant	$\frac{d}{dx}[sin^{-1}(x)] = \frac{1}{\sqrt{1 - x^2}}$ $\frac{d}{dx}[cos^{-1}(x)] = \frac{-1}{\sqrt{1 - x^2}}$ $\frac{d}{dx}[tan^{-1}(x)] = \frac{1}{1 + x^2}$ $\frac{d}{dx}[cot^{-1}(x)] = \frac{-1}{1 + x^2}$ $\frac{d}{dx}[sec^{-1}(x)] = \frac{1}{ x \sqrt{x^2 - 1}}$ $\frac{d}{dx}[csc^{-1}(x)] = \frac{-1}{ x \sqrt{x^2 - 1}}$
33. Hyperbolic Sine $\left(\frac{e^x - e^{-x}}{2}\right)$	$\frac{d}{dx}[\sinh(x)] = \cosh(x)$
34. Hyperbolic Cosine $\left(\frac{e^x + e^{-x}}{2}\right)$	$\frac{d}{dx}[sinh(x)] = cosh(x)$ $\frac{d}{dx}[cosh(x)] = sinh(x)$
35. Hyperbolic Tangent	$\frac{1}{dx}[tanh(x)] = sech^2(x)$
36. Hyperbolic Cotangent	$\frac{d}{dx}[coth(x)] = -\csc h^2(x)$
37. Hyperbolic Secant	$\frac{d}{dx}[coth(x)] = -csch^{2}(x)$ $\frac{d}{dx}[sech(x)] = -sech(x) tanh(x)$ $\frac{d}{dx}[csch(x)] = -csch(x) coth(x)$
38. Hyperbolic Cosecant	$\frac{d}{dx}[csch(x)] = -csch(x) coth(x)$
39. Hyperbolic Arcsine	$\frac{d}{dx}[\sinh^{-1}(x)] = \frac{1}{\sqrt{x^2 + 1}}$
40. Hyperbolic Arccosine	$\frac{d}{dx}[csch(x)] = -csch(x) coth(x)$ $\frac{d}{dx}[sinh^{-1}(x)] = \frac{1}{\sqrt{x^2 + 1}}$ $\frac{d}{dx}[cosh^{-1}(x)] = \frac{1}{\sqrt{x^2 - 1}}, x > 1$ $\frac{d}{dx}[tanh^{-1}(x)] = \frac{1}{1 - x^2}, x < 1$
41. Hyperbolic Arctangent	$\frac{d}{dx}[tanh^{-1}(x)] = \frac{1}{1 - x^2}, x < 1$
42. Hyperbolic Arccotangent	$\frac{d}{dx}[coth^{-1}(x)] = \frac{1}{1 - x^2}, x > 1$
43. Hyperbolic Arcsecant	$\frac{d}{dx}[sech^{-1}(x)] = \frac{-1}{x\sqrt{1-x^2}}$
44. Hyperbolic Arccosecant	$\frac{d}{dx}[coth^{-1}(x)] = \frac{1}{1 - x^2}, x > 1$ $\frac{d}{dx}[sech^{-1}(x)] = \frac{-1}{x\sqrt{1 - x^2}}$ $\frac{d}{dx}[csch^{-1}(x)] = \frac{-1}{ x \sqrt{1 + x^2}}$

Graph	Graphing with Derivatives			
f	Gives Us	When set = 0	Graph Info	Physics
f(x)	Height, y	Roots	Sketch known functions	Position, $s(t)$
f'(x)	Slope, m	Critical Points, Local Extreme Values, Min/Max	Pick easy integer x values (-1, 0, 1) in between each critical point to determine where the slope is increasing/decreasing.	Velocity, $v(t)$
f''(x)	Concavity	Inflection Points	Concave up U if + (min) Concave down \bigcap if – (max)	Acceleration, $a(t)$

Analyzing the Graph of a Function	(See <u>Harold's Graphing Rationals Cheat Sheet</u>)	
x-Intercepts (Zeros or Roots)	f(x) = 0	
y-Intercept	f(0) = y	
Domain	Valid x values	
Range	Valid y values	
Continuity	No division by 0, no negative square roots or logarithms	
Vertical Asymptotes (VA)	x = division by 0 or undefined	
Horizontal Asymptotes (HA)	$\lim_{x \to \infty^{-}} f(x) \to y \text{ and } \lim_{x \to \infty^{+}} f(x) \to y$ $\lim_{x \to \infty^{-}} f(x) \to \infty \text{ and } \lim_{x \to \infty^{+}} f(x) \to \infty$	
Infinite Limits at Infinity	$\lim_{x \to \infty^-} f(x) \to \infty$ and $\lim_{x \to \infty^+} f(x) \to \infty$	
Differentiability	Limit from both directions arrives at the same slope	
Relative Extrema	Create a table with domains: $f(x)$, $f'(x)$, $f''(x)$	
Concavity	If $f''(x) \to +$, then cup up \bigcup If $f''(x) \to -$, then cup down \bigcap	
Points of Inflection	f''(x) = 0 , then the concavity changes	
Graph	+ Slope - Slope Inflection Point - Slope Inflection Point - Slope Inflection Point - Slope Inflection Point - Slope	

Derivative Tests	
Test for Increasing and Decreasing Functions	1. If $f'(x) \ge 0$, then f is monotone increasing (slope up) \nearrow 2. If $f'(x) > 0$, then f is strictly increasing (slope up) \nearrow 3. If $f'(x) \le 0$, then f is monotone decreasing (slope down) \searrow 4. If $f'(x) < 0$, then f is strictly decreasing (slope down) \searrow 5. If $f'(x) = 0$, then f is constant (zero slope) \Rightarrow and is possibly a min/max
First Derivative Test	Critical points: 1. If $f'(x)$ changes from – to + at c , then f has a relative minimum at $(c, f(c))$ 2. If $f'(x)$ changes from + to – at c , then f has a relative maximum at $(c, f(c))$ 3. If $f'(x)$, is + c + or – c –, then $f(c)$ is neither Absolute minimum/maximum: 1. Test $f(x)$ at the domain boundaries $[a, b]$, meaning check $f(a)$ and $f(b)$ 2. Include $f(x)$ for all critical points as well 3. The largest/smallest wins
Second Derivative Test	Let $f'(c) = 0$, and $f''(x)$ exists, then 1. If $f''(x) > 0$, then f has a relative minimum at $(c, f(c))$ 2. If $f''(x) < 0$, then f has a relative maximum at $(c, f(c))$ 3. If $f''(x) = 0$, then the test fails
Test for Concavity	1. If $f''(x) > 0$ for all x , then the graph is concave up (cup up \cup) 2. If $f''(x) < 0$ for all x , then the graph is concave down (cup down \cap)
Inflection Points (Change in concavity)	If $(c, f(c))$ is a point of inflection of $f(x)$, then either 1. $f''(c) = 0$ or 2. $f''(x)$ does not exist at $x = c$

Extrema	
Local Maximum	A function $f(x)$ has a local max at $x = a$ if $f(a)$ is greater than or equal to (\ge)
(Relative Max.)	the values of $f(x)$ in some interval around a . a is usually near the origin.
Local Minimum	A function $f(x)$ has a local minimum at $x = a$ if $f(a)$ is less than or equal to (\leq)
(Relative Min.)	the values of $f(x)$ in some interval around a . a is usually near the origin.
Absolute Maximum	A function $f(x)$ has an absolute maximum at $x =$
(Global Max.)	c if $f(c)$ is greater than or equal to $(\ge) f(x)$ for all x in the domain of f.
Absolute Minimum	A function $f(x)$ has an absolute minimum at $x =$
(Global Min.)	d if $f(d)$ is less than or equal to $(\leq) f(x)$ for all x in the domain.
Critical Points Find the derivative $f'(x)$ and set it to zero to find critical points.	
Critical Politis	Critical points are where the derivative is zero or undefined.
	For absolute extrema on a closed interval $[a, b]$, evaluate the function at the crit
Endpoints	ical points and at the endpoints $f(a)$ and $f(b)$. The largest value among these
	will be the absolute maximum, and the smallest will be the absolute minimum.

Equations of a Line	Used for Tangent Lines
Standard Form	ax + by + c = 0
Standard Form	where a is positive
Slope-Intercept Form	y = mx + b
Point-Slope Form	$y-y_0=m(x-x_0)$ where $m=f'(x_0)$ at point (x_0,y_0)
Intercept Form	$\frac{x}{a} + \frac{y}{b} = 1$ where a is the $x - intercept$ and b is the $y - intercept$
Calculus Form	f(x) = f'(c)x + f(0) $f(x) = f'(c)(x - c) + f(c)$
Slope	$f(x) = f'(c)(x - c) + f(c)$ $m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \rightarrow \frac{dy}{dx} = f'(x)$
Vertical Line	x = a
Horizontal Line	y = b

Physics	Translational Motion		
	1D	2D	
Position	$s(t) = \mathbf{s}_0 + \mathbf{v}_0 t + \frac{1}{2} \mathbf{a} t^2$	$x(t) = x_0 + v_{0,x}t + \frac{1}{2}a_xt^2$	
		$y(t) = \mathbf{y}_0 + \mathbf{v}_{0,y}t + \frac{1}{2}\mathbf{g}t^2$	
Velocity	v(t) = s'(t)	$v(t) = v_0 + at$ $v^2 = v_0^2 + 2a(x - x_0)$	
Acceleration	a(t) = v'(t) = s''(t)	a(t) = a	
Jerk (Jolt)	$j(t) = a'(t) = v''(t) = s^{(3)}(t)$	When a car brakes sharply or accelerates quickly.	
Gravitational Constant (g) (Planet Earth)	$g \approx -9.81 \frac{m}{s^2}$	$g \approx -32.2 \frac{ft}{s^2}$	

Differentiation	a & Differentials	
Rolle's Theorem	Assume f is <u>continuous</u> on the closed interval $[a,b]$, and f is <u>differentiable</u> on the open interval (a,b) . If $f(a) = f(b)$, then there exists at least one number c in (a,b) such that $f'(c) = 0$.	y = f(x) $y = f(x)$ $f'(c) = 0$ $f(a) = f(b)$ $f(a) = f(b)$
Mean Value Theorem	If f meets the conditions of Rolle's Theorem, then you can find ' c '. $f'(c) = \frac{f(b) - f(a)}{b - a} = \frac{\Delta y}{\Delta x}$ $f(b) = f(a) + (b - a)f'(c)$	tangent line $(a, f(a))$ a c b x
Intermediate Value Theorem	Assume f is a <u>continuous</u> function with the interval $[a,b]$ as its domain. If f takes values $f(a)$ and $f(b)$ at each end of the interval, then it also takes any value between $f(a)$ and $f(b)$ at some point within the interval.	$f(b)$ $f(a)$ $y = f(x)$ $b \to x$
Calculating Differentials (Tangent line approximation)	$f(x + \Delta x) \approx f(x) + \Delta y$ $\text{since } dy = f'(x) dx$ $\text{then } \Delta y \approx f'(x) \Delta x$ so $f(x + \Delta x) \approx f(x) + f'(x) \Delta x$ $\text{Relative Error} = \frac{\Delta f}{f} \text{ in } \%$ $\text{Example: } \sqrt[4]{82}$ $f(x) = \sqrt[4]{x}$ $f(x + \Delta x) = f(81 + 1)$	$y = f(x)$ $dx = \Delta x$ $dx = \Delta x$ tangent line $y = f(a) + f'(a)(x - a)$
Newton- Raphson Method	Finds zeros of f , or finds c if $f(c)=0$. $x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$ Example: $\sqrt[4]{82}$ $f(x)=x^4-82=0$ start with $x_0=3$	X X2 X1 X0

Bisection Method	 Finds zeros of f for a continuous function. Find two points, a and b, where f(a) · f(b) < 0. Calculate the midpoint, t, between a and b. If f(t) = 0, then t is the root of the function. Divide the interval [a, b] in half and repeat the process until step 3. 	y axis root lies within this interval f(x) positive guess 2 root lies within this interval
Euler's Method	Approximates f given an initial value and the function's derivative (solves an ODE). Initial Condition: $y_0 = y(x_0)$ Definition: $y_i = y(x_i)$ Derivative Function: $y'(x_i) = f(x_i, y_i)$ $y_{n+1} = y(x_n) + h \cdot y'(x_n)$ $y_{n+1} = y_n + h \cdot f(x_n, y_n)$	y_1 y_2 y_3 y_4 y_0
Related Rates	Steps to solve: 1. Identify the known variables and rates of change. $x = 15 m$ $y = 20 m$ $x' = 2 \frac{m}{s}$ $y' = \underline{\qquad } \frac{m}{s}$ 2. Construct an equation relating these quantities. $x^2 + y^2 = r^2$ (Typically, the Pythagorean Theorem, similar triangles, or volume formulas.) 3. Differentiate both sides of the equation. $2xx' + 2yy' = 0$ 4. Solve for the desired rate of change. $y' = -\frac{x}{y}x'$ 5. Substitute the known rates of change and quantities into the equation. $y' = -\frac{15}{20} \cdot 2 = 1.5 \frac{m}{s}$	$\frac{dy}{dt} = ?$ x $\frac{dx}{dt} = 2$
L'Hôpital's Rule	$ \lim_{x \to c} f(x) = \lim_{x \to c} \frac{P(x)}{Q(x)} $ $ = \left\{ \frac{0}{0}, \frac{\infty}{\infty}, 0 \bullet \infty, \infty - \infty, 0^{0}, 1^{\infty}, \infty^{0} \right\}, $ but not $\{0^{\infty}, \infty^{\infty}\}$, then $ \lim_{x \to c} \frac{P(x)}{Q(x)} = \lim_{x \to c} \frac{P'(x)}{Q'(x)} = \lim_{x \to c} \frac{P''(x)}{Q''(x)} = \cdots $	

Numerical Method	S	
Riemann Sum	$P_{0}(x) = \int_{a}^{b} f(x) dx = \lim_{\ P\ \to 0} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x_{i}$ where $a = x_{0} < x_{1} < x_{2} < \dots < x_{n} = b$ and $\Delta x_{i} = x_{i} - x_{i-1}$ and $\ P\ = max\{\Delta x_{i}\}$ Types: • Left Sum (LHS) • Middle Sum (MHS) • Right Sum (RHS)	14 12 10 10 10 10 10 10 10 10 10 10 10 10 10
Midpoint Rule (Middle Sum/MHS)	$P_0(x) = \int_a^b f(x) \ dx \approx \sum_{i=1}^n f(\bar{x}_i) \ \Delta x =$ $\Delta x \left[f(\bar{x}_1) + f(\bar{x}_2) + f(\bar{x}_3) + \dots + f(\bar{x}_n) \right]$ where $\Delta x = \frac{b-a}{n}$ and $\bar{x}_i = \frac{(x_{i-1}+x_i)}{2} = \text{midpoint of } [x_{i-1}, x_i]$	y X ₀ X ₁ X ₂ X ₃ X ₃ X ₄ X ₄ X ₅ X ₆ X
Trapezoidal Rule	Error Bounds: $ E_M \leq \frac{K(b-a)^3}{24n^2}$ $P_1(x) = \int_a^b f(x) dx \approx$ $\frac{\Delta x}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)]$ $\text{where } \Delta x = \frac{b-a}{n}$ $\text{and } x_i = a + i\Delta x$ $\text{Error Bounds: } E_T \leq \frac{K(b-a)^3}{12n^2}$	y
Simpson's Rule	Error Bounds: $ E_T \leq \frac{K(b-a)^3}{12n^2}$ $P_2(x) = \int_a^b f(x) dx \approx \frac{\Delta x}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)]$ Where n is even and $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$ Error Bounds: $ E_S \leq \frac{K(b-a)^5}{180n^4}$	y
TI-84 Plus	[MATH] fnInt(f(x),x,a,b), [MATH] [1] [ENTER] Example: [MATH] fnInt(x^2,x,0,1) $\int_0^1 x^2 dx = \frac{1}{3}$	000000 000000 000000 000000 000000
TI-Nspire CAS	[MENU] [4] Calculus [3] Integral [TAB] [TAB] [X] [^] [2] [TAB] [TAB] [X] [ENTER] Shortcut: [ALPHA] [WINDOWS] [4]	

Integration	(See <u>Harold's Fundamental</u> -	Theorem of Calculus Cheat Sheet)
Basic Integration Rules (Integration is the "inverse" of differentiation, and vice versa.)	$\int f'(x) dx = f(x) + C$ $\frac{d}{dx} \int f(x) dx = f(x)$	Tip : Use the $f'(x)$ tables and integrate both sides to determine many common integrals.
Reimann Sum	$\sum_{i=1}^n f(c_i) \Delta x_i,$	where $x_{i-1} \le c_i \le x_i$
Definition of a Definite Integral (Area under the curve)	$\sum_{i=1}^{n} f(c_i) \Delta x_i, \text{where } x_{i-1} \le c_i \le x_i$ $\lim_{\ \Delta\ \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i = \int_a^b f(x) dx$ $\text{where } \ \Delta\ = \Delta x = \frac{b-a}{a}$	
Swap Bounds	where $\ \Delta\ = \Delta x = \frac{b-a}{n}$ $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$ $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$	
Additive Interval Property	$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$	
First Fundamental Theorem of Calculus	$\int_{a}^{b} f(x) dx = F(b) - F(a)$	
Second Fundamental Theorem of Calculus	$\frac{d}{dx} \int_{a}^{g(x)} f(t) dt$	dt = f(x) $dt = f(g(x))g'(x)$ $d(x)h'(x) - f(g(x))g'(x)$
Mean Value Theorem for Integrals	$\int_{a}^{b} f(x) dx = f(c)(b - a)$ Find 'c'.	y f(c)
Average Value of a Function	Continuous: $\frac{1}{b-a} \int_{a}^{b} f(x) dx$ Discrete: $Ave = \frac{1}{n} \sum_{i=1}^{n} a_{i}$	$y = f(x)$ A_1 a b

Common Anti-Derivatives	(See Cengage Learning 1-Page Calculus Formulas)
1. Zero Rule $f(x) = 0$	$\int 0 dx = C$
2. Constant Rule $f(x) = k = kx^0$	$\int k dx = kx + C$
3. Constant Multiple Rule	$\int k f(x) dx = k \int f(x) dx$
4. Sum and Difference Rule	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$
5. Power Rule $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \text{ where } n \neq -1$ If $n = -1$, then $\int x^{-1} dx = \ln x + C$
6. Power Rule w/Chain Rule	If $u = g(x)$, and $u' = \frac{d}{dx}g(x)$ then $\int u^n \mathbf{u}' dx = \frac{u^{n+1}}{n+1} + C, \text{ where } n \neq -1$
7. Natural Exponent	$\int e^x dx = e^x + C$
8. Exponent	$\int a^x dx = \frac{1}{\ln a} a^x + C$
9. Natural Logarithm	$\int \frac{1}{x} dx = \ln x + C$
10. Logarithm	$\int \frac{1}{x} dx = (\ln a) \log_a x + C$
11. Sine	$\int \sin(x) dx = -\cos(x) + C$
12. Cosine	$\int \cos(x) \ dx = \sin(x) + C$
13. Tangent	$\int \tan(x) dx = -\ln \cos(x) + C$
14. Cotangent	$\int \cot(x) dx = \ln \sin(x) + C$
15. Secant	$\int \sec(x) dx = \ln \sec(x) + \tan(x) + C$
16. Cosecant	$\int \csc(x) dx = -\ln \csc(x) + \cot(x) + C$
17. Secant ²	$\int sec^2(x) \ dx = tan(x) + C$
18. Cosecant ²	$\int csc^2(x) dx = -cot(x) + C$
19. Arcsine	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + C$
20. Arctangent	$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$
21. Arcsecant	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + C$ $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C$ $\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a} \sec^{-1}\left(\frac{ x }{a}\right) + C$

Integration Methods		
1. Memorized	See Cengage Learning <u>1-Page Calculus Formulas</u>	
	$\int f(g(x))g'(x)dx = F(g(x)) + C$	
2 U Cub attack	Set $u = g(x)$, then $du = g'(x) dx$	
2. U-Substitution	$\int f(u) du = F(u) + C$	
	$u = \underline{\qquad}, du = \underline{\qquad} dx$ $\int u dv = uv - \int v du$	
	$u = \underline{\hspace{1cm}}, \qquad v = \underline{\hspace{1cm}}$ $du = \underline{\hspace{1cm}} dx, \qquad dv = \underline{\hspace{1cm}} dx$	
	,	
3. Integration by Parts	Pick u using the LIATE Rule:	
	L – Logarithmic: $\ln x$, $\log_b x$	
	I – Inverse Trig.: $\sin^{-1} x \cdot \cos^{-1} x \cdot \tan^{-1} x$	
	A – Algebraic: $x^2, 3x^{60}, \sqrt{x}, etc$.	
	T – Trigonometric: $\sin x$, $\cos x$, $\tan x$	
	E – Exponential: e^x , 19^x	
	$\int \frac{P(x)}{O(x)} dx$	
	where $P(x)$ and $Q(x)$ are polynomials.	
4. Partial Fractions	Case 1: If the degree of $P(x) \ge Q(x)$	
	then do long division first.	
	Case 2: If the degree of $P(x) < Q(x)$	
	then do partial fraction expansion.	
	$\int \sqrt{a^2 - x^2} \ dx$	
	J	
5a. Trig Substitution for $\sqrt{a^2 - x^2}$	Substitution: $x = a \sin \theta$ Identity: $1 - \sin^2 \theta = \cos^2 \theta$	
	identity. $1 - \sin \theta - \cos \theta$	
	$\int \sqrt{x^2 - a^2} \ dx$	
	J	
5b. Trig Substitution for $\sqrt{x^2 - a^2}$	Substitution: $x = a \sec \theta$ Identity: $\sec^2 \theta - 1 = \tan^2 \theta$	
	identity. Sec 0 1 = tun 0	
	$\int \sqrt{x^2 + a^2} \ dx$	
5c. Trig Substitution for $\sqrt{x^2 + a^2}$		
See Fing Substitution for $\sqrt{x} + u$	Substitution: $x = a \tan \theta$ Identity: $\tan^2 \theta + 1 = \sec^2 \theta$	
	TI-Nspire CX CAS Graphing Calculator	
6. Computer Algebra System (CAS)	TI –Nspire CAS iPad app	
7. Numerical Methods	Riemann Sum, Midpoint Rule, Trapezoidal Rule, Simpson's Rule,	
	various quadrature rules, TI-84 Calculator, etc.	
8. WolframAlpha	WolframAlpha is the Google of mathematics. Shows steps. Free.	
9. Al Chatbot	openAI <u>ChatGPT</u> , Microsoft <u>Copilot</u> , Google <u>Gemini</u> , xAI <u>Grok</u> , <u>et</u>	

Partial Fractions	(See <u>Harold's Partial Fraction Decomposition Cheat Sheet</u>)	
Condition	$f(x) = \frac{P(x)}{Q(x)}$ where $P(x)$ and $Q(x)$ are polynomials and the degree of $P(x) < Q(x)$.	
	If the degree of $P(x) \ge Q(x)$, then do long division first. $P(x)$	
Example Expansion	$= \frac{A}{(ax+b)(cx+d)^2(ex^2+fx+g)} = \frac{A}{(ax+b)} + \frac{B}{(cx+d)} + \frac{C}{(cx+d)^2} + \frac{Dx+E}{(ex^2+fx+g)}$	
Typical Solution	$\int \frac{a}{x+b} dx = a \ln x+b + C$	

Sequences & Series	(See <u>Harold's Series Cheat Sheet</u>)	
Sequence	$\lim_{n\to\infty} a_n = L \text{(Limit)}$	
Sequence	Example: $(a_n, a_{n+1}, a_{n+2},)$	
	$a(1-r^n)$ a	
	$S = \lim_{n \to \infty} \frac{a(1 - r^n)}{1 - r} = \frac{a}{1 - r}$	
Geometric Series	only if $ r < 1$	
	where r is the radius of convergence	
	and $(-r,r)$ is the interval of convergence	

Convergence Tests	(See <u>Harold's Series Convergence Tests Cheat Sheet</u>)	
	1. Divergence or n^{th} Term	6. Ratio
	2. Geometric Series	7. Root
Series Convergence Tests	3. p-Series	8. Direct Comparison
	Alternating Series	9. Limit Comparison
	5. Integral	10. Telescoping Series

Taylor Series	(See <u>Harold's Taylor Series Cheat Sheet</u>) (See <u>Harold's Infinite Series Cheat Sheet</u>)	
Taylor Series	$f(x) = P_n(x) + R_n(x)$	
	$=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n + \frac{f^{(n+1)}(x^*)}{(n+1)!} (x-c)^{n+1}$	
	where $x \le x^* \le c$	
	(x^* is the worst-case scenario or max. value of $f(x)$ in the range.)	
	and $\lim_{x \to +\infty} R_n(x) = 0$.	