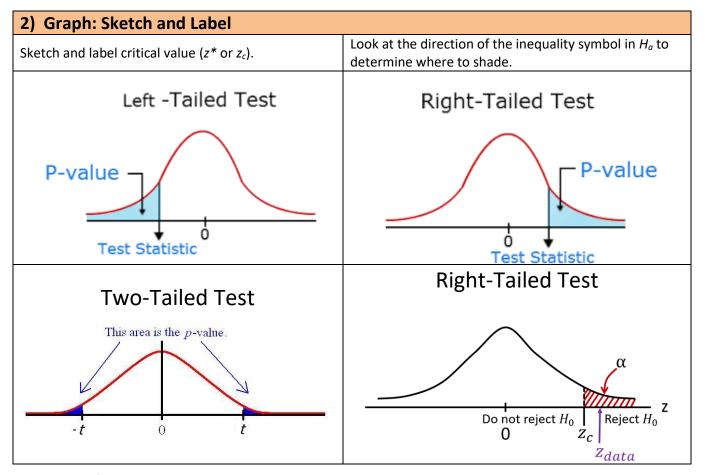
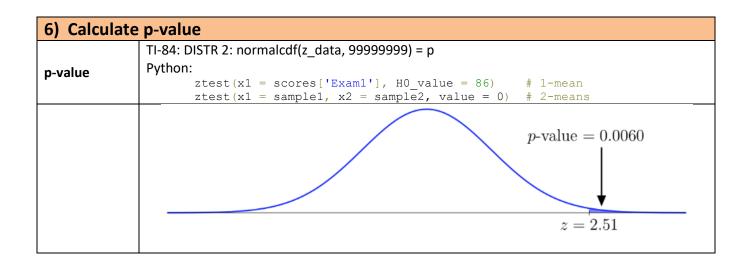

Harold's Statistics Hypothesis Testing Cheat Sheet


23 June 2022

Hypothesis Terms	Definitions			
Significance Level ($lpha$)	Defines the strength of evidence in probabilistic terms. Specifically, alpha represents the probability that tests will produce statistically significant results when the null hypothesis is correct. In most fields, $\alpha = 0.05$ is used most often.			
Confidence Level (c)	The percentage of all possible samples that can be expected to include the true population parameter. $\alpha + c = 1$			
Confidence Interval	A range of values within which you are fairly confident that the true value for the population lies. (e.g., $69\% \pm 3.8\%$)			
Critical Value (z*)	z* is the critical value of a standard normal distribution under H_0 . Critical values divide the rejection and non-rejection regions. Set using p-values or to a threshold value of 0.05 (5%) or 0.01 (1%), but always \leq 0.10 (10%).			
Test Statistic (z _{data})	A value calculated from sample data during hypothesis testing that measures the degree of agreement between the sample data and the null hypothesis. If z_{data} is inside the rejection region, demarked by z^* , then we can reject the null hypothesis, H_0 .			
p-value	Probability of obtaining a sample "more extreme" than the ones observed in your data, assuming H_0 is true.			
Hypothesis	A premise or claim that we want to test.			
Null Hypothesis: <i>H</i> ₀	 Currently accepted value for a parameter (middle of the distribution). Is assumed true for the purpose of carrying out the hypothesis test. Always contains an "=" {=, ≤, ≥} The null value implies a specific sampling distribution for the test statistic H₀ is the middle of the normal distribution curve at z = 0. Can be rejected, or not rejected, but NEVER supported 			
Alternative Hypotheses: <i>H</i> _a	 Also called Research Hypothesis or H₁. Is the opposite of H₀ and involves the claim to be tested. Is supported only by carrying out the test if the null hypothesis can be rejected. Always contains ">" (right-tailed), "<" (left-tailed), or "≠" (two-tailed) [tail selection is important] Can be supported (by rejecting the null), or not supported (by failing or rejecting the null), but NEVER rejected 			

Hypothesis Testing	Steps
Hypothesis Testing (for one population)	 Claim: Formulate the null (H₀) and the alternative (H_a) hypothesis Graph: Sketch and label critical value (left-tailed, right-tailed, two-tailed) Decision Rule: Use significance level (α), confidence level (c), confidence Interval, or critical value z*. e.g., We will reject H₀ if z_{data} > 1.645. Critical Value: Determine critical values (z*) to mark the rejection regions Test Statistic: Calculate the test statistic (z_{data} or t_{data}) from the sample data p-Value: Use the test statistic to find the p-value Conclusion: Reject the null hypothesis (supporting the alternative hypothesis) otherwise fail to reject the null hypothesis, then state claim

1) Claim: Formulate Hypothesis		
If claim consists of	then the hypothesis	and is represented
ij ciaini consists oj	test is	by
"is equal to", "is exactly", "is the same as", "is between"	Two-tailed =	
"is at least"	Left-tailed ≤	H_0
"is at most"	Right-tailed ≥	
"is not equal to", "is different from", "has changed from"	Two-tailed ≠	
"is less than", "is below", "is lower or smaller than", "reducing"	Left-tailed <	Ha
"is greater than", "is above", "is longer or bigger than"	Right-tailed >	
Make sure $H_0 + H_a$ = all possible outcomes.		
Types of Hypothesis Tests	Standard Normal Model	H : n = n < 0:



Copyright © 2020-2022 by Harold Toomey, WyzAnt Tutor

3) Decision Rule					
p-value	Use probability value to determine z_c in a Normal distribution table.				
Significance level ($lpha$)	$\alpha=1-c$ Usually at a threshold value of 0.05 (5%) or 0.01 (1%), but always \leq 0.10 (10%). The significance level α is the area under the curve outside the confidence interval.				
Confidence Level (c)	$c = 1 - \alpha$ With a confidence of 0.95 (95%) or 0.99 (99%), but always \geq 0.90 (90%).				
Confidence Interval for μ	A 95% confidence interval means that the interval calculated has a probability of 95% containing the population mean, μ . $\sigma \text{ known, normal population or large sample (n)}$ $z \text{ interval} = \bar{x} \pm SE(\bar{x})$ $= \bar{x} \pm z^* \frac{\sigma}{\sqrt{n}}$ $= [\bar{x} - SE(\bar{x}), \bar{x} + SE(\bar{x})]$ $\frac{\alpha}{2} = \frac{1-c}{2}$ $z^* = z\alpha_{/2} = z - score \text{ for probabilities of } \alpha/2 \text{ (two - tailed)}$				
Examples	 We will reject the null hypothesis (H₀) if: Significance level (α) is less than 5% Confidence level (c) is greater than 95% Confidence interval is between 5% and 95% (± 5%) z_{data} > z* in a right-tailed test 				
Python	<pre>import scipy.stats as st n = 100 df = n - 1 mean = 219 stderr = (sd = 35.0)/(n ** 0.5) print(st.t.interval(0.95, df, mean, stderr))</pre>				

4) Determine Critical Values (z*) / Rejection Region						
	Determine z^* by looking up α , c, or p-values in a standard normal distribution table. Two-tailed tests have two values for z^* .					
Critical Values (-*)		Significance Level (α)	Confidence Level (c)	Critical Value		
Critical Values (z*)		$\alpha = 0.10$	c = 0.90	z* = 1.645		
		$\alpha = 0.05$	c = 0.95	z* = 1.960		
		$\alpha = 0.01$	c = 0.99	z* = 2.576		
					<u>-</u>	

5) Calculate Test Statistic (z_{data}) or z-score				
Population Mean (μ) / Sample Mean (\overline{x})		$z_{data} = \frac{\bar{x} - \mu}{SE(x)} = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$	Variance known. Assumes data is normally distributed or $n \ge 30$ since t approaches standard normal Z if n is sufficiently large due to the CLT.	
		$t_{data} = \frac{\bar{x} - \mu}{SE(\bar{x})} = \frac{\bar{x} - \mu}{S/\sqrt{n}}$		Variance unknown. t distribution, $df = n - 1$ under H_0 .
Population Proportion (p) / Sample Proportion (\widehat{p})		$z_{data} = \frac{\hat{p} - p}{SE(\hat{p})} = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$	Population proportion known. To be statistically significant, this assumes $np \geq 15$ and $n(1-p) \geq 15$.	
		Worst Case: $p = 0.50$ $z_{data} = \frac{\hat{p} - p}{SE(\hat{p})} = (2\hat{p} - 1)\sqrt{n}$	Population proportion unknown.	
<pre>Python (1 mean) from statsmodels.stats.weightstats import ztest import pandas as pd from statsmodels.stats.proportion import proportions_ztest scores = pd.read_csv('http://data- analytics.zybooks.com/ExamScores.csv') print(ztest(x1 = scores['Exam1'], H0_value = 86)) print(st.ttest_lsamp(scores['Exam1'], H0_value = 82)) print(proportions_ztest(count, nobs, value, prop_var = value))</pre>			(-2.5113146627890988, 0.012028242796839027) z-score = 2.511 p-value = 0.0120 / 2 = 0.0060 Ttest_1sampResult(statist ic=0.5327, pvalue=0.5966)	
Python (2 means)				(-0.58017208108908169, 0.56179857900464247) z-score = -0.5802 p-value = 0.5618 (two-tailed)

7) Conclusion		
Statistical Decision Reject the null hypothesis (supporting the alternative hypothesis) using a te below.		
Conclusions of p-test	If p-value $< \alpha \Rightarrow$ Reject H_0 in favor of H_a . If p-value $\ge \alpha \Rightarrow$ Fail to Reject H_0 .	
Conclusions of mean test	If significance level (α) is less than $5\% \Rightarrow \text{Reject } H_0$ in favor of H_a . If confidence level (c) is greater than $95\% \Rightarrow \text{Reject } H_0$ in favor of H_a . If test statistic is greater than (right-tailed) the critical value, $z_{\text{data}} > z^* \Rightarrow \text{Reject } H_0$.	
Conclusions of Confidence Interval for µ / z interval	Reject the null hypothesis if the test statistic falls in the rejection region otherwise, fail to reject the null hypothesis. If confidence interval is between 5% and 95%, meaning $(\pm 5\%) \Rightarrow \text{Reject } H_0$.	

Hypothesis Testing Error Types					
Ideally, a statistical test should have a low			H_0 true	H_0 false	
significance level (α) and <u>high</u> power ($1-\beta$).	Decision	Reject H_0	Type I error $Prob = \alpha$	Correct decision	
Type I Error (α): False Positive Type II Error (β): False Negative		Fail to reject H_0	Correct decision	Type II error $Prob = \beta$	
H_0		H_a			
Type II error Type I error					