Harold's Real Analysis Cheat Sheet

22 October 2022

Number Sets

Symbol	Definition	Examples	Equations	Solution
Ø	empty set, set with no members	{ }	1 = 2	null
N	natural numbers	$\mathbb{N}_1 = \{1, 2, 3,\}$	Pre-2010	NA
19	natural numbers	$\mathbb{N}_0 = \{0, 1, 2, 3,\}$	See ISO 8000	0-2 2-6.1
\mathbb{P}	prime numbers	{2, 3, 5, 7, 11, 13,}	unofficial	NA
Z	integers	{, -2, -1, 0, 1, 2,}	x + 7 = 0	x = -7
Q	rational numbers	{0, ¼, ½, ¾, 1}	4x - 1 = 0	$x = \frac{1}{4}$
A	algebraic numbers	{5, -7, ½, √2}	$2x^2 + 4x - 7 = 0$	x is algebraic
T	transcendental numbers	$\{\pi, e, e^{\pi}, sin(x), \log_{b} a\}$	$\mathbb{T}=\mathbb{U}-\mathbb{A}$	NA
R	real numbers	{3.1415, -1, ℁, √2, π}	$x^2 - 2 = 0$	$x = \pm \sqrt{2}$
Π	imaginary numbers	$\{2i, \sqrt{-1}\}$	$x^2 + 1 = 0$	$x = \pm \sqrt{-1}$ $x = \pm i$
C	complex numbers	{1 + 2i, -3.4i, %}	$x^2 - 4x + 5 = 0$	$x = 2 \pm i$
U	universal set	{all possible values}	Ø	NA

Derived Number Sets

Symbol	Definition	Equations	Examples	
Integers Z				
{0}	zero	n = 0	{0}	
ℤ* ℤ - {0} ℤ \ {0}	non-zero integers	n ≠ 0	{-3, -2, -1, 1, 2, 3,}	
\mathbb{Z}^+	positive integers	n > 0	{1, 2, 3,}	
N U {0}	non-negative integers	n ≥ 0	{0, 1, 2, 3,}	
ℤ-	negative integers	n < 0	{, -3, -2, -1}	
ℤ- U {0}	non-positive integers	n ≤ 0	{, -3, -2, -1, 0}	
Real Numbe	ers \mathbb{R}			
{0}	zero	x = 0	{0.0}	
ℝ - {0} ℝ \ {0}	non-zero real numbers	x ≠ 0	$\{-0.001, 0.001\}$	
ℝ+ (0, ∞)	positive real numbers	x > 0	{0.0001, 0.0002,}	
ℝ+ U {0} [0, ∞)	non-negative real numbers	x ≥ 0	{0, 0.0001, 0.0002,}	
R- (-∞, 0)	negative real numbers	x < 0	{, -0.0002, -0.0001}	
ℝ- U {0} (-∞, 0]	non-positive real numbers	x ≤ 0	{, -0.0002, -0.0001, 0}	

Definitions

Term	Definition
Definition	A precise and unambiguous description of the meaning of a mathematical term. It characterizes the meaning of a word by giving all the properties and only those properties that must be true.
Theorem	A mathematical statement that is proved using rigorous mathematical reasoning. In a mathematical paper, the term theorem is often reserved for the most important results.
Lemma	A minor result whose sole purpose is to help in proving a theorem. It is a steppingstone on the path to proving a theorem. Very occasionally lemmas can take on a life of their own (Zorn's lemma, Urysohn's lemma, Burnside's lemma, Sperner's lemma).
Corollary	A result in which the (usually short) proof relies heavily on a given theorem (we often say that "this is a corollary of Theorem A").
Proposition	A proved and often interesting result, but generally less important than a theorem.
Conjecture	A statement that is unproved, but is believed to be true (Collatz conjecture, Goldbach conjecture, twin prime conjecture).
Claim	An assertion that is then proved. It is often used like an informal lemma.
Axiom / Postulate	A statement that is assumed to be true without proof. These are the basic building blocks from which all theorems are proved (Euclid's five postulates, Zermelo-Fraenkel axioms, Peano axioms).
Identity	A mathematical expression giving the equality of two (often variable) quantities (trigonometric identities, Euler's identity).
Paradox	A statement that can be shown, using a given set of axioms and definitions, to be both true and false. Paradoxes are often used to show the inconsistencies in a flawed theory (Russell's paradox). The term paradox is often used informally to describe a surprising or counterintuitive result that follows from a given set of rules (Banach-Tarski paradox, Alabama paradox, Gabriel's horn).

Textbook Bloch, Ethan D.. The Real Numbers and Real Analysis. Springer New York, 2011.

Ch. 1.2: Natural Numbers \mathbb{N}

Axiom / Theorem / Lemma / Definition	Description		
	Let S be a set.		
Operations: Binary, Unary (Definition 1.1.1)	A binary operation on S is a function $S \times S \rightarrow S$.		
	A unary operation on S is a function $S \rightarrow S$.		
	There exists a set $\mathbb N$ with an element $1 \in \mathbb N$ and a function s: $\mathbb N o$		
	${\mathbb N}$ that satisfy the following three properties.		
Peano Postulates	a. There is no $n \in \mathbb{N}$ such that $s(n) = 1$.		
(Axiom 1.2.1)	b. The function s is injective.		
	c. Let $G \subseteq \mathbb{N}$ be a set. Suppose that $1 \in G$, and that if $g \in G$		
	then $s(g) \in G$. Then $G = \mathbb{N}$.		
Natural Number	The set of natural numbers , denoted \mathbb{N} , is the set the existence of which is given in the Peerse Peertulates		
(Definition 1.2.2)	which is given in the Peano Postulates.		
Lemma 1.2.3	Let $a \in \mathbb{N}$. Suppose that $a \neq 1$. Then there is a unique $b \in \mathbb{N}$ such that $a = s(b)$.		
Definition by Recursion	Let H be a set, let $e \in H$ and let k: $H \rightarrow H$ be a function. Then there		
(Theorem 1.2.4)	is a unique function f: $\mathbb{N} \rightarrow H$ such that f(1) = e, and that f \circ s = k \circ f.		
	There is a unique binary operation $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ that satisfies the		
Operation: +	following two properties for all $n,m \in \mathbb{N}$.		
(Theorem 1.2.5)	a. $n + 1 = s(n)$. (successor).		
,	b. $n + s(m) = s(n + m)$. [= $n + (m+1)$]		
	There is a unique binary operation $*: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ that satisfies the		
Operation: *	following two properties for all $n,m \in \mathbb{N}$. a. $n * 1 = n$.		
(Theorem 1.2.6)			
	b. n * s(m) = n(m+1) = (n * m) + n.		
	Let a, b, $c \in \mathbb{N}$.		
	1. If $a + c = b + c$, then $a = b$ (Cancellation Law for Addition).		
Addition Laws	2. $(a + b) + c = a + (b + c)$ (Associative Law for Addition).		
(Theorem 1.2.7a)	3. 1 + a = s(a) = a + 1.		
	4. a + b = b + a (Commutative Law for Addition).		
	5. a + b ≠ 1.		
	6. a + b ≠ a.		
	Let a, b, $c \in \mathbb{N}$.		
	7. a * 1 = a = 1 * a (Identity Law for Multiplication).		
	8. (a + b)c = ac + bc (Distributive Law).		
Multiplication Laws	9. ab = ba (Commutative Law for Multiplication).		
(Theorem 1.2.7b)	10. c(a + b) = ca + cb (Distributive Law).		
	11. (ab)c = a(bc) (Associative Law for Multiplication).		
	12. If ac = bc then a = b (Cancellation Law for Multiplication).		
	13. ab = 1 if and only if a = 1 = b.		
Relation: <	The relation < on \mathbb{N} is defined by a < b if and only if there is some p		
(Definition 1.2.8a)	\in N such that a + p = b, for all a,b \in N.		
Relation: ≤	The relation \leq on \mathbb{N} is defined by a \leq b if and only if a $<$ b or a = b,		
(Definition 1.2.8b)	for all $a, b \in \mathbb{N}$.		

	Let a, b, c, $d \in \mathbb{N}$.
	1. a ≤ a, and a ≮ a, and a < a + 1.
	2. 1 ≤ a.
	3. If a < b and b < c, then a < c; if a \leq b and b < c, then a < c; if a < b
	and $b \le c$, then $a < c$; if $a \le b$ and $b \le c$, then $a \le c$.
Deletions double	4. $a < b$ if and only if $a + c < b + c$.
Relation: $<$ and \leq	5. a < b if and only if ac < bc.
(Theorem 1.2.9)	6. Precisely one of a < b or a = b or a > b holds (Trichotomy Law).
	7. a \leq b or b \leq a.
	8. If $a \le b$ and $b \le a$, then $a = b$.
	9. It cannot be that $b < a < b + 1$.
	10. $a \le b$ if and only if $a < b + 1$.
	11. a < b if and only if a + 1 \leq b.
Well-Ordering Principle	Let $G \subseteq \mathbb{N}$ be a non-empty set. Then there is some $m \in G$ such that
(Theorem 1.2.10)	m ≤ g for all g ∈ G.

Ch. 1.3 – 1.4: Integers \mathbb{Z}

Axiom, Theorem, etc.		Description
Relation: ~	The relation \sim on $\mathbb{N} \times \mathbb{N}$ is defined by (a,b) \sim (c,d) if and only if a +	
(Definition 1.3.1)	$d = b + c$, for all (a,b),(c,d) $\in \mathbb{N} \times \mathbb{N}$.	
Relation: ~ (Lemma 1.3.2)	The relation \sim is an equivalence relation on $\mathbb{N} \times \mathbb{N}$.	
Integers: Z (Definition 1.3.3)	The set of integers, denoted \mathbb{Z} , is the set of equivalence classes of $\mathbb{N} \times \mathbb{N}$ with respect to the equivalence relation \sim .	
Well-Defined: +, * (Lemma 1.3.4)	The binary operations + and *, the unary operation $-$, and the relation <, all on \mathbb{Z} , are well-defined.	
Addition & Multiplication Laws (Definition 1.4.1 & 1.3.5)	An ordered integral doma binary operations + and \cdot , which satisfy the following Let x, y, z \in R. a. $(x + y) + z = x + (y + z)$ b. $x + y = y + x$ c. $x + 0 = x$ d. $x + (-x) = 0$ e. $(xy)z = x(yz)$ f. $xy = yx$ g. $x \cdot 1 = x$ h. $x(y + z) = xy + xz$ i. If $xy = 0$, then $x = 0$ or $y =$ j. Precisely one of $x < y$ or k. If $x < y$ and $y < z$, then x l. If $x < y$ then $x + z < y + z$	 ain is a set R with elements 0,1 ∈ R, a unary operation – and a relation <, g properties. (Associative Law for Addition). (Commutative Law for Addition). (Identity Law for Addition). (Inverses Law for Addition). (Inverses Law for Addition). (Associative Law for Multiplication). (Commutative Law for Multiplication). (Identity Law for Multiplication).
Relation: ≤ (Definition 1.4.2)	Let R be an ordered integral domain, and let $A \subseteq R$ be a set. 1. The relation \leq on R is defined by a \leq b if and only if a $<$ b or a = b, for all a,b \in R. 2. The set A has a least element if there is some a \in A such that a \leq x for all x \in A.	
Well-Ordering Principle (Definition 1.4.3)	Let R be an ordered integral domain. The ordered integral domain R satisfies the Well-Ordering Principle if every non-empty subset of $\{x \in R \mid x > 0\}$ has a least element.	
Axiom for the Integers (Axiom 1.4.4)	There exists an ordered integral domain \mathbbm{Z} that satisfies the Well-Ordering Principle.	

	Let x, y, $z \in \mathbb{Z}$.	
	1. If x + z = y + z, then x = y (Cancellation Law for Addition).	
	2(-x) = x.	
	3(x + y) = (-x) + (-y).	
	$4. \mathbf{x} \cdot 0 = 0.$	
Properties of Integers 5. If $z \neq 0$ and if $xz = yz$, then $x = y$ (Cancellation Law for		
(Lemma 1.4.5 & 1.3.8) $6. (-x)y = -xy = x(-y).$		
	7. xy = 1 if and only if $x = 1 = y$ or $x = -1 = y$.	
	8. $x > 0$ if and only if $-x < 0$, and $x < 0$ if and only if $-x > 0$.	
	9.0<1.	
	10. If $x \le y$ and $y \le x$, then $x = y$.	
	11. If $x > 0$ and $y > 0$, then $xy > 0$. If $x > 0$ and $y < 0$, then $xy < 0$.	
Discreteness	Laty C. 7. Then there is now C. 7. such that you do you 1	
(Theorem 1.4.6 & 1.3.9)	Let $x \in \mathbb{Z}$. Then there is no $y \in \mathbb{Z}$ such that $x < y < x + 1$.	
Positive/Negative: +, -	1. Let $x \in \mathbb{Z}$. The number x is positive if $x > 0$, and the number x is	
(Definition 1.4.7 & 1.3.6)	negative if x < 0.	
	Let i: $\mathbb{N} \to \mathbb{Z}$ be defined by i(n) = [(n+1,1)] for all $n \in \mathbb{N}$.	
	1. The function i: $\mathbb{N} \to \mathbb{Z}$ is injective.	
	2. $i(\mathbb{N}) = \{x \in \mathbb{Z} \mid x > 0^{}\}.$	
$\mathbb{N} \subseteq \mathbb{Z}$:	$3. i(1) = 1^{\circ}.$	
(Theorem 1.3.7 & Definition 1.4.7)	4. Let $a, b \in \mathbb{N}$. Then	
Definition 1.4.7)	a. $i(a+b) = i(a) + i(b);$	
	b. $i(ab) = i(a) i(b);$	
	c. $a < b$ if and only if i(a) < i(b).	
Natural Numbers: ℕ	2. The set of natural numbers, denoted \mathbb{N} , is defined by $\mathbb{N} = \{x \in \mathbb{Z} \mid x \in \mathbb{Z} \}$	
(Definition 1.4.7)	x > 0}.	
	Let s: $\mathbb{N} \to \mathbb{N}$ be defined by s(n) = n + 1 for all $n \in \mathbb{N}$.	
Peano Postulates	a. There is no $n \in \mathbb{N}$ such that $s(n) = 1$.	
(Theorem 1.4.8 & Axiom	b. The function s is injective.	
1.2.1)	c. Let $G \subseteq \mathbb{N}$ be a set. Suppose that $1 \in G$, and that if $g \in G$	
	then $s(g) \in G$. Then $G = \mathbb{N}$.	

Ch. 1.5: Rational Numbers ${\mathbb Q}$

Definition / Lemma / Theorem Relation: ≍, ℤ*	Description Let $\mathbb{Z}^* = \mathbb{Z}^- \{0\}$. The relation \asymp on $\mathbb{Z} \times \mathbb{Z}^*$ is defined by $(x, y) \asymp (z, w)$ if	
(Definition 1.5.1) Relation: ≍ (Lemma 1.5.2)	and only if $xw = yz$, for all $(x, y), (z, w) \in \mathbb{Z} \times \mathbb{Z}*$. The relation \asymp is an equivalence relation.	
Rational Numbers: Q (Definition 1.5.3)	 The set of rational numbers, denoted Q, is the set of equivalence classes of Z × Z* with respect to the equivalence relation ≍. The elements 0⁻,1⁻ ∈ Q are defined by 0⁻ = [(0,1)] and 1⁻ = [(1,1)]. Let Q* = Q - {0⁻}. The binary operations + and · on Q are defined by [(x,y)] + [(z,w)] = [(xw + yz,yw)] [(x,y)] · [(z,w)] = [(xz, yw)] for all [(x, y)],[(z,w)] ∈ Q. -: The unary operation - on Q is defined by -[(x, y)] = [(-x, y)] for all [(x, y)] ∈ Q. -1: The unary operation ⁻¹ on Q* is defined by [(x, y)]⁻¹ = [(y, x)] for all [(x, y)] ∈ Q*. < The relation < on Q is defined by [(x,y)] < [(z,w)] if and only if either xw < yz when y > 0 and w > 0 or when y < 0 and w < 0, >: The relation > on Q is defined by [(x,y)] > [(z,w)] if and only if either xw > yz when y > 0 and w < 0 or when y < 0 and w > 0, for all [(x, y)],[(z,w)] ∈ Q. ≤: The relation ≤ on Q is defined by [(x, y)] ≤ [(z,w)] if and only if either xw > yz when y > 0 and w < 0 or when y < 0 and w > 0, for all [(x, y)],[(z,w)] ∈ Q. 	
Well-Defined: Q	The binary operations + and \cdot , the unary operations – and $^{-1}$, and the	
(Lemma 1.5.4)	relation <, all on \mathbb{Q} , are well-defined .	

	Lot r c t C M		
	Let $r,s,t \in \mathbb{Q}$. Field:		
	1. $(r + s) + t = r + (s + t)$	(Associative Law for Addition).	
	2.r + s = s + r	(Commutative Law for Addition).	
	$3.r+0^{-}=r$	(Identity Law for Addition).	
	4. $r + (-r) = 0^{-1}$	(Inverses Law for Addition).	
	5. $(rs)t = r(st)$	(Associative Law for Multiplication).	
Addition and	6. rs = sr	(Commutative Law for Multiplication).	
Multiplication Laws	7. $r \cdot 1^{-} = r$	(Identity Law for Multiplication).	
(Theorem 1.5.5)	8. If $r \neq 0^{-}$, then $r \cdot r^{-1} = 1^{-1}$	(Inverses Law for Multiplication).	
	9. $r(s + t) = rs + rt$	(Distributive Law).	
	Ordered Field:		
	11. If r < s and s < t, then r < t	(Transitive Law).	
	12. If r < s then r + t < s + t	(Addition Law for Order).	
	13. If $r < s$ and $t > 0^-$, then $rt < st$	(Multiplication Law for Order).	
	14. 0 ⁻ ≠ 1 ⁻	(Non-Triviality).	
	Let i: $\mathbb{Z} \to \mathbb{Q}$ be defined by i(x) =	$[(x,1)]$ for all $x \in \mathbb{Z}$.	
	1. The function i: $\mathbb{Z} \to \mathbb{Q}$ is injective.		
	2. $i(0) = 0^{-}$ and $i(1) = 1^{-}$.		
$\mathbb{Z} \subseteq \mathbb{Q}$:	3. Let $x, y \in \mathbb{Z}$. Then		
(Theorem 1.5.6)	a. $i(x + y) = i(x) + i(y);$		
	b. $i(-x) = -i(x);$		
	c. $i(xy) = i(x) i(y);$		
	d. $x < y$ if and only if $i(x) < i(y)$.		
	4. For each $r \in \mathbb{Q}$ there are $x, y \in \mathbb{Z}$ such that $y \neq 0$ and $r = i(x) (i(y))^{-1}$.		
	The binary operation – on \mathbb{Q} is defined by r – s = r + (–s) for all r,s $\in \mathbb{Q}$.		
Operations: -, \div , s ⁻¹ , $\frac{r}{s}$	The binary operation \div on $\mathbb{Q}*$ is defined by $r \div s = rs^{-1}$ for all $r, s \in \mathbb{Q}*$;		
(Definition 1.5.7)	we also let $0 \div s = 0 \cdot s^{-1} = 0$ for all $s \in \mathbb{Q}*$.		
	The number r ÷ s is also denoted $\frac{r}{s}$.		
	Let $a, c \in \mathbb{Z}$ and $b, d \in \mathbb{Z}^*$.		
	1. $\frac{a}{b} = \frac{c}{d}$ if and only if ad = bc.		
	b = d and $b = d$		
	$2.\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}.$		
Rational Numbers: Q	$3\frac{a}{b} = \frac{-a}{b}$.		
(Lemma 1.5.8)	$4. \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$		
(Definition 1.5.3 Restated)			
Restatedy	5. If $a \neq 0$, then $\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$.		
	6. If b > 0 and d > 0, or if b < 0 an	d d < 0, then $\frac{a}{b} < \frac{c}{d}$ if and only if ad < bc;	
		d > 0, then $\frac{a}{b} > \frac{c}{d}$ if and only if ad > bc.	
		b d	

Ch. 1.6: Dedekind Cuts Dr

Definition / Lemma	Description	
	Let $A \subseteq \mathbb{Q}$ be a set. The set A is a Dedekind cut if the following	
Dedekind cut	three properties hold.	
(Definition 1.6.1)	a. A \neq 0 and A \neq Q.	
AKA "upper cut"	b. Let $x \in A$. If $y \in \mathbb{Q}$ and $y \ge x$, then $y \in A$.	
	c. Let $x \in A$. Then there is some $y \in A$ such that $y < x$.	
	A Dedekind cut is a set, A, of rational numbers, with the properties shown above.	
	a. Property (a) says A must be nonempty and cannot be all of $\mathbb{Q}.$	
Interpreting Dedekind cuts	b. Property (b) says if a number, x, is in A, then all rational numbers greater than x are also in A.	
	c. Property (c) is where things get interesting. It says that if x is in A, then there is at least one element of A that is smaller than x. (Actually, there are infinitely many.) This property is what is going to allow us to fill in the gaps in the rational numbers.	
Dedekind cut Existence (Lemma 1.6.2)	Let $r\in \mathbb{Q}.$ Then the set $\{x\in \mathbb{Q}\mid x>r\}$ is a Dedekind cut.	
Dedekind cut not in form of Lemma 1.6.2 (Example 1.6.3)	Let $T = \{x \in \mathbb{Q} \mid x > 0 \text{ and } x^2 > 2\}.$ (1.6.1) It is seen by Exercise 1.6.2 (1) that T is a Dedekind cut, and by Part (2) of that exercise it is seen that if T has the form $\{x \in \mathbb{Q} \mid x > r\}$ for some $r \in \mathbb{Q}$, then $r^2 = 2$. By Theorem 2.6.11 we know that there is no rational number x such that $x^2 = 2$, and it follows that T is a Dedekind cut that is not of the form given in Lemma 1.6.2.	
	Let $r \in \mathbb{Q}$.	
Rational cut D _r (Definition 1.6.4)	The rational cut at r, denoted D _r , is the Dedekind cut D _r = { $x \in \mathbb{Q}$ $x > r$ }. An irrational cut is a Dedekind cut that is not a rational cut at any rational number.	
Complement of Dedekind	Let $A \subseteq \mathbb{Q}$ be a Dedekind cut.	
cut	1. $\mathbb{Q} - A = \{x \in \mathbb{Q} \mid x < a \text{ for all } a \in A\}.$ or $\{x \in \mathbb{Q} \mid x \le r\}.$	
(Lemma 1.6.5)	2. Let $x \in \mathbb{Q} - A$. If $y \in \mathbb{Q}$ and $y \le x$, then $y \in \mathbb{Q} - A$.	
Trichotomy Law (Lemma 1.6.6)Let $A, B \subseteq \mathbb{Q}$ be Dedekind cuts. Then precisely one of A solution or $B \subsetneqq A$ holds. NOTE: $A \subsetneqq B$ means that both $A \subset B$ and $A \neq B$.		

Let A be a non-empty family of subsets of \mathbb{Q} . Suppose that Dedekind cut for all $X \in A$. If $\bigcup_{X \in A} X \neq \mathbb{Q}$, then $\bigcup_{X \in A} X$ is Dedekind cut.Union of Family of Sets (Lemma 1.6.7)For example, think about what happens if the set A is define way: $A = \{x \in \mathbb{Q} \mid x > 4\},\ \{x \in \mathbb{Q} \mid x > 3.2\},\ \{x \in \mathbb{Q} \mid x > 3.15\},\ \{x \in \mathbb{Q} \mid x > 3.142\},\ \{x \in \mathbb{Q} \mid x > 3.1416\},\ \{x \in \mathbb{Q} \mid x > 3.14160\},\ \{x \in \mathbb{Q} \mid x > 3.141593\},\}$ If you were to union all of the elements of A, you would end With $\{x \in \mathbb{Q} \mid x > 3.141593\},\}$	
Dedekind cut Examples (Lemma 1.6.8)	with { $x \in \mathbb{Q} \mid x > \pi$ }. This is how the "gaps" get filled in. Let A,B $\subseteq \mathbb{Q}$ be Dedekind cuts. 1. The set { $r \in \mathbb{Q} \mid r = a + b$ for some $a \in A$ and $b \in B$ } is a Dedekind cut. 2. The set { $r \in \mathbb{Q} \mid -r < c$ for some $c \in \mathbb{Q} - A$ } is a Dedekind cut. 3. Suppose that $0 \in \mathbb{Q} - A$ and $0 \in \mathbb{Q} - B$. The set { $r \in \mathbb{Q} \mid r = ab$ for some $a \in A$ and $b \in B$ } is a Dedekind cut. 4. Suppose that there is some $q \in \mathbb{Q} - A$ such that $q > 0$. The set { $r \in \mathbb{Q} \mid r > 0$ and $\frac{1}{r} < c$ for some $c \in \mathbb{Q} - A$ } is a Dedekind cut.
Well-Ordering Principle (Lemma 1.6.9)	Let $A \subseteq \mathbb{Q}$ be a Dedekind cut. Let $y \in \mathbb{Q}$. 1. Suppose that $y > 0$. Then there are $u \in A$ and $v \in \mathbb{Q}$ – A such that $y = u - v$, and $v < e$ for some $e \in \mathbb{Q} - A$. 2. Suppose that $y > 1$, and that there is some $q \in \mathbb{Q}$ – A such that $q > 0$. Then there are $r \in A$ and $s \in \mathbb{Q}$ – A such that $s > 0$, and $y > \frac{r}{s}$, and $s < g$ for some $g \in \mathbb{Q}$ – A.

Ch. 1.7: Real Numbers $\mathbb R$ (Ch. 1)

Axiom / Theorem / Lemma / Definition	Description	
Real Numbers: $\mathbb R$	The set of real numbers, denoted $\mathbb R$, is defined by	
Definition 1.7.1	$\mathbb{R} = \{A \subseteq \mathbb{Q} \mid A \text{ is a Dedekind cut}\}.$	
Relations: <, ≤ (Definition 1.7.2)	2) The relation $<$ on \mathbb{R} is defined by $A < B$ if and only if $A \supseteq B$, for all $A, B \in \mathbb{R}$. The relation \le on \mathbb{R} is defined by $A \le B$ if and only if $A \supseteq B$, for all $A, B \in \mathbb{R}$.	
Operation: +, - (Definition 1.7.3)The binary operation + on \mathbb{R} is defined by $A + B = \{r \in \mathbb{Q} \mid r = a + b \text{ for some } a \in A \text{ and } b \in B\}$ for all $A, B \in \mathbb{R}$. The unary operation - on \mathbb{R} is defined by $-A = \{r \in \mathbb{Q} \mid -r < c \text{ for some } c \in \mathbb{Q} - A\}$ for all $A \in \mathbb{R}$.		
Multiply Operator Setup Lemma 1.7.4Let $A \in \mathbb{R}$, and let $r \in \mathbb{Q}$.1. $A > D_r$ if and only if there is some $q \in \mathbb{Q}$ – A such that $q > 2$. $A \ge D_r$ if and only if $r \in \mathbb{Q}$ – A if and only if $a > r$ for all $a \in 3$. If $A < D_0$ then $-A \ge D_0$.		
$\begin{array}{c} \textbf{Operations: } \bullet, \ ^{-1} \\ \textbf{(Definition 1.7.5)} \end{array} \qquad \begin{array}{c} \text{The binary operation } \bullet \text{ on } \mathbb{R} \text{ is defined by} \\ \text{if } A \geq D_0 \text{ and } B \geq D_0 \\ \text{-}[(-A) \bullet B], \text{if } A < D_0 \text{ and } B \geq D_0 \\ \text{-}[(-A) \bullet B], \text{if } A < D_0 \text{ and } B \geq D_0 \\ \text{-}[A \bullet (-B)], \text{if } A \geq D_0 \text{ and } B < D_0 \\ (-A) \bullet (-B), \text{if } A < D_0 \text{ and } B < D_0. \end{array}$ $\begin{array}{c} \text{The unary operation } ^{-1} \text{ on } \mathbb{R} - \{ D_0 \} \text{ is defined by} \\ \text{A}^{-1} = \begin{cases} \{r \in \mathbb{Q} \mid r > 0 \text{ and } \frac{1}{r} < c \text{ for some } c \in \mathbb{Q} - A\}, \\ \text{if } A > D_0 \\ \text{-}(-A)^{-1}, \text{if } A < D_0. \end{cases}$		

	Let A,B,C $\in \mathbb{R}$. Field: 1. (A + B) + C = A + (B + C) 2. A + B = B + A	(Associative Law for Addition). (Commutative Law for Addition).	
Addition and Multiplication Laws (Theorem 1.7.6)	3. $A + D_0 = A$ 4. $A + (-A) = D_0 = 0$ 5. $(AB)C = A(BC)$ 6. $AB = BA$ 7. $A \bullet D_1 = A$ 8. If $A \neq D_0$, then $AA^{-1} = D_1 = 2$ 9. $A(B + C) = AB + AC$ Ordered Field:	 (Identity Law for Addition). (Inverses Law for Addition). (Associative Law for Multiplication). (Commutative Law for Multiplication). (Identity Law for Multiplication). =1 (Inverses Law for Multiplication). (Distributive Law). 	
	12. If A < B then A + C < B + C 13. If A < B and C > D ₀ , then A 14. D ₀ < D ₁ or 0 < 1		
Least Upper Bound Property Setup (Definition 1.7.7)	Let $A \subseteq \mathbb{R}$ be a set. 1. The set A is bounded above if there is some $M \in \mathbb{R}$ such that $X \le M$ for all $X \in A$. The number M is called an upper bound of A. 2. The set A is bounded below if there is some $P \in \mathbb{R}$ such that $X \ge P$ for all $X \in A$. The number P is called a lower bound of A. 3. The set A is bounded if it is bounded above and bounded below. 4. Let $M \in \mathbb{R}$. The number M is a least upper bound (also called a supremum) of A if M is an upper bound of A, and if $M \le T$ for all upper bounds T of A. 5. Let $P \in \mathbb{R}$. The number P is a greatest lower bound (also called an infimum) of A if P is a lower bound of A, and if $P \ge V$ for all lower bounds V of A.		
Greatest Lower Bound Property (glb) (Theorem 1.7.8)	Let $A \subseteq \mathbb{R}$ be a set. If A is non-empty and bounded below, then A has a greatest lower bound. (used in Dedekind cut proofs)		
Least Upper Bound Property (lub) (Theorem 1.7.9)	Let $A \subseteq \mathbb{R}$ be a set. If A is nonempty and bounded above, then A has a least upper bound.		
ℚ⊆ ℝ: (Theorem 1.7.10)	Let i: $\mathbb{Q} \to \mathbb{R}$ be defined by $i(r) = D_r$ for all $r \in \mathbb{R}$. 1. The function i: $\mathbb{Q} \to \mathbb{R}$ is injective. 2. $i(0) = D_0$ and $i(1) = D_1$. 3. Let $r, s \in \mathbb{Q}$. Then a. $i(r + s) = i(r) + i(s);$ b. $i(-r) = -i(r);$ c. $i(rs) = i(r) i(s);$ d. if $r \neq 0$ then $i(r^{-1}) = [i(r)]^{-1};$ e. $r < s$ if and only if $i(r) < i(s)$.		

Ch. 2.2: Real Numbers $\mathbb R$

Definitions / Axiom	Description			
Addition and Multiplication Laws (Definition 2.2.1)	An ordered field is a set F with elements $0,1 \in F$, binary operations + and \cdot , a unary operation $-$, a relation <, and a unary operation $^{-1}$ on F - {0}, which satisfy the following properties. Let x,y,z \in F. a. $(x + y) + z = x + (y + z)$ (Associative Law for Addition). b. $x + y = y + x$ (Commutative Law for Addition). c. $x + 0 = x$ (Identity Law for Addition). d. $x + (-x) = 0$ (Inverses Law for Addition). e. $(xy)z = x(yz)$ (Associative Law for Multiplication). f. $xy = yx$ (Commutative Law for Multiplication). f. $xy = yx$ (Commutative Law for Multiplication). h. If $x \neq 0$, then $xx^{-1} = 1$ (Inverses Law for Multiplication). i. $x(y + z) = xy + xz$ (Distributive Law). j. Precisely one of $x < y$ or $x = y$ or $x > y$ holds (Trichotomy Law). k. If $x < y$ and $y < z$, then $x < z$ (Transitive Law). l. If $x < y$ and $z > 0$, then $xz < yz$ (Multiplication Law for Order). m. If $x < y$ and $z > 0$, then $xz < yz$ (Multiplication Law for Order). n. $0 \neq 1$ (Non-Triviality).			
Bounds (Definition 2.2.2) Least Upper Bound	Let F be an ordered field and let $A \subseteq F$ be a set. 1. The set A is bounded above if there is some $M \in F$ such that $x \leq M$ for all $x \in A$. The number M is called an upper bound of A. 2. The set A is bounded below if there is some $P \in F$ such that $x \geq P$ for all $x \in A$. The number P is called a lower bound of A. 3. The set A is bounded if it is bounded above and bounded below. 4. Let $M \in F$. The number M is a least upper bound (also called a supremum) of A if M is an upper bound of A, and if $M \leq T$ for all upper bounds T of A. 5. Let $P \in F$. The number P is a greatest lower bound (also called an infimum) of A if P is a lower bound of A, and if $P \geq V$ for all lower bounds V of A.			
Property (Definition 2.2.3)	Let F be an ordered field. The ordered field F satisfies the Least Upper Bound Property if every non-empty subset of F that is bounded above has a least upper bound.			
Axiom for the Real Numbers (Axiom 2.2.4)	There exists an ordered field ${\mathbb R}$ that satisfies the Least Upper Bound Property.			

Ch. 2.3: Algebraic Properties of Real Numbers ${\mathbb R}$

Definitions / Axiom	Description		
Operators: $-, \div, 2, \leq$,	1a. The binary operation – on \mathbb{R} is defined by a – b = a + (–b) for all a, b $\in \mathbb{R}$. 1b. The binary operation \div on \mathbb{R} – {0} is defined by a \div b = ab ⁻¹ for all a, b $\in \mathbb{R}$ – {0}; we also let 0 \div s = 0 \cdot s ⁻¹ = 0 for all s $\in \mathbb{R}$ – {0}. The number a \div b is also denoted $\frac{a}{b}$ or a/b.		
(Definition 2.3.1)	2. Let $a \in \mathbb{R}$. The square of a, denoted a^2 , is defined by $a^2 = a \cdot a$. 3. The relation \leq on \mathbb{R} is defined by $x \leq y$ if and only if $x < y$ or $x = y$, for all $x, y \in \mathbb{R}$.		
Properties of Real Numbers (Lemma 2.3.2)	4. The number $2 \in \mathbb{R}$ is defined by $2 = 1 + 1$. Let $a,b,c \in \mathbb{R}$. 1. If $a + c = b + c$ then $a = b$ (Cancellation Law for Addition). 2. If $a + b = a$ then $b = 0$. 3. If $a + b = a$ then $b = -a$. 4. $-(a + b) = (-a) + (-b)$. 5. $-0 = 0$. 6. If $ac = bc$ and $c \neq 0$, then $a = b$ (Cancellation Law for Multiplication). 7. $0 \cdot a = 0 = a \cdot 0$. 8. If $ab = a$ and $a \neq 0$, then $b = 1$. 9. If $ab = 1$ then $b = a^{-1}$. 10. If $a \neq 0$ and $b \neq 0$, then $(ab)^{-1} = a^{-1} b^{-1}$. 11. $(-1) \cdot a = -a$. 12. $(-a)b = -ab = a(-b)$. 13. $-(-a) = a$. 14. $(-1)^2 = 1$ and $1^{-1} = 1$. 15. If $ab = 0$, then $a = 0$ or $b = 0$ (No Zero Divisors Law). 16. If $a \neq 0$ then $(a^{-1})^{-1} = a$. 17. If $a \neq 0$ then $(-a)^{-1} = -a^{-1}$.		

	Let a,b,c,d $\in \mathbb{R}$.			
	1. If $a \le b$ and $b \le a$, then $a = b$.			
	2. If a \leq b and b \leq c, then a \leq c.			
	If $a \le b$ and $b < c$, then $a < c$.			
	If a < b and b \leq c, then a < c.			
	3. If $a \le b$ then $a + c \le b + c$.			
	4. If $a < b$ and $c < d$, then $a + c < b + d$;			
	if $a \le b$ and $c \le d$, then $a + c \le b + d$.			
	5. $a > 0$ if and only if $-a < 0$, and $a < 0$ if and only if $-a > 0$; also			
Relations: <, ≤	a ≥ 0 if and only if $-a \le 0$, and a ≤ 0 if and only if $-a \ge 0$.			
(Lemma 2.3.3)	6. a < b if and only if b – a > 0 if and only if $-b < -a$; also			
	$a \le b$ if and only if $b-a \ge 0$ if and only if $-b \le -a$.			
	7. If a \neq 0 then a ² > 0.			
	81 < 0 < 1.			
	9. a < a + 1.			
	10. If $a \le b$ and $c > 0$, then $ac \le bc$.			
	11. If $0 \le a < b$ and $0 \le c < d$, then $ac < bd$;			
	if $0 \le a \le b$ and $0 \le c \le d$, then $ac \le bd$.			
	12. If $a < b$ and $c < 0$, then $ac > bc$.			
	13. If $a > 0$ then $a^{-1} > 0$.			
	14. If $a > 0$ and $b > 0$, then $a < b$ if and only if $b^{-1} < a^{-1}$ if and only if $a^2 < b^2$.			
Let $a \in \mathbb{R}$.				
Positive / Negative	The number a is positive if a > 0;			
(Definition 2.3.4)	the number a is negative if a < 0; and			
	the number a is non-negative if a ≥ 0.			
	Let a,b,c,d $\in \mathbb{R}$.			
	1. If a > 0 and b > 0, then a + b > 0. (Addition)			
	If a > 0 and b \ge 0, then a + b > 0.			
	If $a \ge 0$ and $b \ge 0$, then $a + b \ge 0$.			
	2. If a < 0 and b < 0, then a + b < 0.			
	If a < 0 and b \leq 0, then a + b < 0.			
	If a ≤ 0 and b ≤ 0 , then a + b ≤ 0 .			
Positive / Negative	$2 + f = 2 + 0$ and $h \ge 0$, then $h \ge 0$, (Multiplication)			
(Lemma 2.3.5)	3. If $a > 0$ and $b > 0$, then $ab > 0$. (Multiplication) If $a > 0$ and $b \ge 0$, then $ab \ge 0$.			
(If $a \ge 0$ and $b \ge 0$, then $ab \ge 0$. If $a \ge 0$ and $b \ge 0$, then $ab \ge 0$.			
	4. If $a < 0$ and $b < 0$, then $ab > 0$.			
	If $a < 0$ and $b \le 0$, then $ab \ge 0$.			
If $a \le 0$ and $b \le 0$, then $ab \ge 0$. 5. If $a < 0$ and $b > 0$, then $ab < 0$.				
	If $a \le 0$ and $b > 0$, then $ab \le 0$.			
	If $a \le 0$ and $b \ge 0$, then $ab \le 0$.			

	Let $a, b \in \mathbb{R}$.		
	An open bounded interval is a set of the form		
	(a,b) = {x ∈ \mathbb{R} a < x < b}, where a ≤ b.		
	A closed bounded interval is a set of the form		
	$[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}, \text{ where } a \le b.$		
Intervals			
(Definition 2.3.6)	A half-open interval is a set of the form $[a,b] = \{u \in \mathbb{R} \mid a \leq u \leq b\} = \{u \in \mathbb{R} \mid a \leq u \leq b\}$		
	$[a,b) = \{x \in \mathbb{R} \mid a \le x < b\}$ or $(a,b] = \{x \in \mathbb{R} \mid a < x \le b\}$, where $a \le b$. An open unbounded interval is a set of the form		
	$(a,\infty) = \{x \in \mathbb{R} \mid a < x\} \text{ or } (-\infty,b) = \{x \in \mathbb{R} \mid x < b\} \text{ or } (-\infty,\infty) = \mathbb{R}.$		
	A closed unbounded interval is a set of the form		
	$[a,\infty) = \{x \in \mathbb{R} \mid a \le x\} \text{ or } (-\infty,b] = \{x \in \mathbb{R} \mid x \le b\}.$		
	 An open interval is either an open bounded interval or an open unbounded 		
	interval.		
	• A closed interval is either a closed bounded interval or a closed unbounded		
	interval.		
	• A right unbounded interval is any interval of the form (a, ∞) , $[a, \infty)$ or $(-\infty, \infty)$.		
	• A left unbounded interval is any interval of the form $(-\infty,b)$, $(-\infty,b]$ or $(-\infty,\infty)$.		
Interval Types	• A non-degenerate interval is any interval of the form (a,b), (a,b], [a,b) or [a,b]		
	 where a < b, or any unbounded interval. The number a in intervals of the form [a,b), [a,b] or [a, ∞) is called the left 		
	endpoint of the interval.		
	• The number b in intervals of the form (a,b], [a,b] or $(-\infty,b]$ is called the right		
	endpoint of the interval.		
	• An endpoint of an interval is either a left endpoint or a right endpoint.		
	• The interior of an interval is everything in the interval other than its endpoints.		
	Let $I \subseteq \mathbb{R}$ be an interval.		
Intervals	1. If x, $y \in I$ and $x \le y$, then $[x, y] \subseteq I$.		
(Lemma 2.3.7)	2. If I is an open interval, and if $x \in I$, then there is some $\delta > 0$ such that $[x \in I]$		
	$-\delta, \mathbf{x} + \delta] \subseteq \mathbf{I}.$		
Absolute Value	Let $a \in \mathbb{R}$. The absolute value of a, denoted $ a $, is defined by		
(Definition 2.3.8)	$ a = (a, \text{ if } a \ge 0 - a, \text{ if } a < 0.$		
	Let $a, b \in \mathbb{R}$. 1. $ a \ge 0$, and $ a = 0$ if and only if $a = 0$.		
	$ 1, a \ge 0$, and $ a = 0$ if and only if $a = 0$. $ 2, - a \le a \le a $.		
Properties of	2. $- a \le a \le a $. 3. $ a = b $ if and only if $a = b$ or $a = -b$.		
Absolute Value	4. $ a < b$ if and only if $-b < a < b$, and $ a \le b$ if and only if $-b \le a \le b$.		
(Lemma 2.3.9)	[4, [a] < b if and only if -b < a < b, and [a] ≤ b if and only if -b ≤ a ≤ b. $[5, [ab] = [a] \cdot [b].$		
	$6. a + b \le a + b $ (Triangle Inequality).		
	7. $ a - b \le a + b $ and $ a - b \le a - b $.		
	Let $a \in \mathbb{R}$.		
Epsilon: ε ≈ 0	1. $a \le 0$ if and only if $a < \varepsilon$ for all $\varepsilon > 0$.		
(Lemma 2.3.10)	2. $a \ge 0$ if and only if $a > -\varepsilon$ for all $\varepsilon > 0$.		
, , , , , , , , , , , , , , , , , , , ,	3. $a = 0$ if and only if $ a < \varepsilon$ for all $\varepsilon > 0$.		

2.4 Real Numbers Include Natural, Integers, and Rationals ($\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$)

Theorem / Lemma / Definition / Corollary	Description			
Inductive Set (Definition 2.4.1)	Let $S \subseteq \mathbb{R}$ be a set. The set S is inductive if it satisfies the following two properties. (a) $1 \in S$. (b) If $a \in S$, then $a + 1 \in S$.			
Definition: ℕ (Definition 2.4.2)	The set of natural numbers , denoted \mathbb{N} , is the intersection of all inductive subsets of \mathbb{R} .			
Properties of ℕ (Lemma 2.4.3)	1. \mathbb{N} is inductive. 2. If A ⊆ \mathbb{R} and A is inductive, then $\mathbb{N} \subseteq A$. 3. If n ∈ \mathbb{N} then n ≥ 1.			
Peano Postulates (Theorem 2.4.4)	Let s: $N \rightarrow N$ be defined by s(n) = n + 1 for all $n \in \mathbb{N}$. a. There is no $n \in \mathbb{N}$ such that s(n) = 1. b. The function s is injective. c. Let $G \subseteq \mathbb{N}$ be a set. Suppose that $1 \in G$, and that if $g \in G$ then s(g) $\in G$. Then $G = \mathbb{N}$.			
N Closed Under +, · (Lemma 2.4.5)	Let $a, b \in \mathbb{N}$. Then $a + b \in \mathbb{N}$ and $ab \in \mathbb{N}$.			
Well-Ordering Principle (Theorem 2.4.6)	Let $G \subseteq \mathbb{N}$ be a non-empty set. Then there is some $m \in G$ such that $m \leq g$ for all $g \in G$.			
Definition: Z (Definition 2.4.7)	Let $-\mathbb{N} = \{x \in \mathbb{R} \mid x = -n \text{ for some } n \in \mathbb{N} \}.$ The set of integers , denoted \mathbb{Z} , is defined by $\mathbb{Z} = -\mathbb{N} \cup \{0\} \cup \mathbb{N}.$			
Properties of $\mathbb Z$ (Lemma 2.4.8)	 N ⊆ Z. a ∈ N if and only if a ∈ Z and a > 0. The three sets - N, {0} and N are mutually disjoint. 			
ℤ Closed Under +, ·, – (Lemma 2.4.9)	Let $a, b \in \mathbb{Z}$. Then $a + b \in \mathbb{Z}$, and $ab \in \mathbb{Z}$, and $-a \in \mathbb{Z}$.			
Integers are Discrete (Theorem 2.4.10)	Let $a, b \in \mathbb{Z}$. 1. If $a < b$ then $a + 1 \le b$. 2. There is no $c \in \mathbb{Z}$ such that $a < c < a + 1$. 3. If $ a-b < 1$ then $a = b$.			
Definition: Q (Definition 2.4.11)	The set of rational numbers , denoted \mathbb{Q} , is defined by $\mathbb{Q} = \{x \in \mathbb{R} \mid x = a / b \text{ for some } a, b \in \mathbb{Z} \text{ such that } b \neq 0\}.$ The set of irrational numbers is the set $\mathbb{R} - \mathbb{Q}$.			
Properties of Q (Lemma 2.4.12)	1. $\mathbb{Z} \subseteq \mathbb{Q}$. 2. $q \in \mathbb{Q}$ and $q > 0$ if and only if $q = a / b$ for some $a, b \in \mathbb{N}$.			

Fraction Manipulation (Lemma 2.4.13)	Let a,b,c,d $\in \mathbb{Z}$. Suppose that b $\neq 0$ and d $\neq 0$. 1. a / b = 0 if and only if a = 0. 2. a / b = 1 if and only if a = b. 3. a / b = c / d if and only if ad = bc. 4. a / b + c / d = (ad + bc) / bd. 5(a / b) = (-a) / b = a / (-b). 6. a / b \cdot c / d = ac / bd. 7. If a $\neq 0$, then (a / b) ⁻¹ = b / a.	
\mathbb{Q} Closed Under +, \cdot , -, ⁻¹	Let $a, b \in \mathbb{Q}$. Then $a + b \in \mathbb{Q}$, and $ab \in \mathbb{Q}$, and $-a \in \mathbb{Q}$, and if $a \neq 0$	
(Corollary 2.4.14)	then $a^{-1} \in \mathbb{Q}$.	

Ch. 2.5: Induction and Recursion

Proposition / Theorem / Lemma / Definition	Description		
Principle of Mathematical Induction (Theorem 2.5.1)	Let $G \subseteq \mathbb{N}$. Suppose that a. $1 \in G$; b. if $n \in G$, then $n + 1 \in G$. Then $G = \mathbb{N}$.		
Proposition 2.5.2 Definition 2.5.3	Example induction proofLet $a, b \in \mathbb{Z}$.		
Principle of Mathematical Induction— Variant/Complete (Theorem 2.5.4)	The set {a,, b} is defined by {a,, b} = { $x \in \mathbb{Z} a \le x \le b$ }. Let $G \subseteq \mathbb{N}$. Suppose that a. $1 \in G$; b. if $n \in \mathbb{N}$ and {1,, n} $\subseteq G$, then $n + 1 \in G$. Then $G = \mathbb{N}$.		
Definition by Recursion (Theorem 2.5.5)	Let H be a set, let $e \in H$ and let k: $H \rightarrow H$ be a function. Then there is a unique function f: $\mathbb{N} \rightarrow H$ such that f(1) = e, and that f(n + 1) = k(f(n)) for all $n \in \mathbb{N}$.		
Definition of x ⁿ Definition 2.5.6	Let $x \in \mathbb{R}$. The number $x^n \in \mathbb{R}$ is defined for all $n \in \mathbb{N}$ by letting $x^1 = x$, and $x^{n+1} = x \cdot x^n$ for all $x \in \mathbb{N}$.		
Lemma 2.5.7	Let $x \in \mathbb{R}$. Suppose that $x \neq 0$. Then $x^n \neq 0$ for all $n \in \mathbb{N}$.		
Definition: x ⁰ Definition 2.5.8	Let $x \in \mathbb{R}$. Suppose that $x \neq 0$. The number $x^0 \in \mathbb{R}$ is defined by $x^0 = 1$. For each $n \in \mathbb{N}$, the number x^{-n} is defined by $x^{-n} = (x^n)^{-1}$.		
Power Rules Lemma 2.5.9	Let $x \in \mathbb{R}$, and let $n,m \in \mathbb{Z}$. Suppose that $x \neq 0$. 1. $x^n x^m = x^{n+m}$. 2. $x^n / x^m = x^{n-m}$.		
Polynomial Function Definition 2.5.10	Let $A \subseteq \mathbb{R}$ be a set, and let $f: A \to \mathbb{R}$ be a function. The function f is a polynomial function if there are some $n \in \mathbb{N} \cup \{0\}$ and $a_0, a_1,, a_n \in \mathbb{R}$ such that $f(x) = a_0 + a_1x + \cdots + a_nx^n$ for all $x \in A$.		
a _{n+1} = n + a _n Theorem 2.5.11	Let H be a set, let $e \in H$ and let $t: H \times \mathbb{N} \to H$ be a function. Then there is a unique function g: $\mathbb{N} \to H$ such that g(1) = e, and that g(n + 1) = t((g(n), n)) for all $n \in \mathbb{N}$.		
Factorial: n! Example 2.5.12	We want to define a sequence of real numbers a_1 , a_2 , a_3 , suchthat $a_1 = 1$, and $a_{n+1} = (n + 1)a_n$ for all $n \in \mathbb{N}$.		
max() Function (Example 2.5.13)	$max\{x, y\} = \begin{cases} x, & \text{if } x \ge y \\ y, & \text{if } x \le y \end{cases}$		
Exercise 2.5.3	Let $n \in \mathbb{N}$, and let $a_1, a_2,, a_n \in \mathbb{R}$. Prove that $ a_1 + a_2 + \cdot \cdot \cdot + a_n \le a_1 + a_2 + \cdot \cdot \cdot + a_n $.		

Ch. 2.6: The Least Upper Bound Property

Theorem / Lemma /	Description		
Corollary / Definition	 (1) Let A = [3,5). Then 10 is an upper bound of A, and −100 is a lower bound. Hence A is bounded above and bounded below, and therefore A is bounded. 		
Unique LUB / GLB (Lemma 2.6.2)	 Let A ⊆ ℝ be a non-empty set. 1. If A has a least upper bound, the least upper bound is unique. 2. If A has a greatest lower bound, the greatest lower bound is unique. 		
lub A / glb A (Definition 2.6.3)	Let $A \subseteq \mathbb{R}$ be a non-empty set. If A has a least upper bound, it is denoted lub A. If A has a greatest lower bound, it is denoted glb A.		
Least Upper Bound Property (Theorem 1.7.9)	Let $A \subseteq \mathbb{R}$ be a set. If A is nonempty and bounded above, then A has a least upper bound.		
Greatest Lower Bound Property (Theorem 2.6.4)	Let $A \subseteq \mathbb{R}$ be a set. If A is non-empty and bounded below, then A has a greatest lower bound.		
Lemma 2.6.5	Let $A \subseteq \mathbb{R}$ be a non-empty set, and let $\varepsilon > 0$. 1. Suppose that A has a least upper bound. Then there is some a \in A such that lub A – $\varepsilon < a \le lub A$. 2. Suppose that A has a greatest lower bound. Then there is some		
No Gap Lemma (Lemma 2.6.6)	$b \in A$ such that glb $A \le b < glb A + \varepsilon$. Let $A, B \subseteq \mathbb{R}$ be non-empty sets. Suppose that if $a \in A$ and $b \in B$, then $a \le b$. 1. A has a least upper bound and B has a greatest lower bound, and lub $A \le glb B$. 2. lub $A = glb B$ if and only if for each $\varepsilon > 0$, there are $a \in A$ and $b \in B$ such that $b - a < \varepsilon$.		
Archimedean Property (Theorem 2.6.7)	Let $a,b \in \mathbb{R}$. Suppose that $a > 0$. Then there is some $n \in \mathbb{N}$ such that $b < na$.		
ℝ In-between ℤs (Corollary 2.6.8)	Let $x \in \mathbb{R}$. 1. There is a unique $n \in \mathbb{Z}$ such that $n - 1 \le x < n$. If $x \ge 0$, then $n \in \mathbb{N}$. 2. If $x > 0$, there is some $m \in \mathbb{N}$ such that $1 / m < x$.		
Square Root Theorem 2.6.9	Let $p \in (0, \infty)$. Then there is a unique $x \in (0, \infty)$ such that $x^2 = p$.		
Square Root: $$ Definition 2.6.10	Let $p \in (0, \infty)$. The square root of p, denoted $\sqrt{-}p$, is the unique x $\in (0, \infty)$ such that $x^2 = p$.		
$\sqrt{2}$ is Irrational (Theorem 2.6.11)	Let $p \in \mathbb{N}$. Suppose that there is no $u \in \mathbb{Z}$ such that $p = u^2$. Then $\sqrt{p} \notin \mathbb{Q}$.		

Q ≠ LUB (Corollary 2.6.12)	The ordered field \mathbb{Q} does not satisfy the Least Upper Bound Property.		
R Sandwich (Theorem 2.6.13)	Let $a, b \in \mathbb{R}$. Suppose that $a < b$. 1. There is some $q \in \mathbb{Q}$ such that $a < q < b$. 2. There is some $r \in \mathbb{R} - \mathbb{Q}$ such that $a < r < b$.		
Heine–Borel Theorem (Theorem 2.6.14)	Let $C \subseteq \mathbb{R}$ be a closed bounded interval, let I be a non-empty set and let $\{A_i\}_{i \in I}$ be a family of open intervals in \mathbb{R} . Suppose that $C \subseteq \bigcup_{i \in I} A_i$. Then there are $n \in \mathbb{N}$ and $i_1, i_2,, i_n \in I$ such that $C \subseteq \bigcup_{k=1}^n A_{i_k}$.		

Ch. 2.7: Uniqueness of the Real Numbers

Theorem	Description		
	Let R_1 and R_2 be ordered fields that satisfy the Least Upper Bour Bronerty. Then there is a function fi $R_1 \rightarrow R_2$ that is bijective, and		
Uniqueness of the Real	Property. Then there is a function f: $R_1 \rightarrow R_2$ that is bijective, and that satisfies the following properties.		
Numbers	Let $x, y \in R_1$.		
(Theorem 2.7.1)	a. $f(x + y) = f(x) + f(y)$.		
	b. $f(xy) = f(x) f(y)$.		
	c. If $x < y$, then $f(x) < f(y)$.		

Ch.	2.8:	Decimal	Expansion	of Real	Numbers
-----	------	---------	------------------	---------	---------

Theorem / Lemma / Definition	Description
Base-p	Let $p \in \mathbb{N}$. Suppose that $p > 1$. Let $n \in \mathbb{N}$. Then there is a unique $k \in \mathbb{N}$.
(Lemma 2.8.1)	\mathbb{N} such that $p^{k-1} \le n < p^k$. Let $p \in \mathbb{N}$. Suppose that $p > 1$. Let $n \in \mathbb{N}$. Then there are unique $k \in \mathbb{N}$.
	N and $a_0, a_1,, a_{k-1} \in \{0,, p - 1\}$ such that $a_{k-1} \neq 0$, and that
Base-p Numbers (Theorem 2.8.2)	$n = \sum_{i=0}^{k-1} a_i p^i.$
Base-p Fractions	Let $p \in \mathbb{N}$. Suppose that $p > 1$. Let $a_1, a_2, a_3, \dots \in \{0, \dots, p-1\}$. Then the set $\left\{\sum_{i=1}^n a_i p^{-i} \mid n \in \mathbb{N}\right\}$
(Lemma 2.8.3)	is bounded below by 0 and is bounded above by 1. [0,1]
	Let $p \in \mathbb{N}$. Suppose that $p > 1$. Let $a_1, a_2, a_3, \in \{0,, p - 1\}$. The sum $\sum_{i=1}^{\infty} a_i p^{-i}$ is defined by
Definition 2.8.4	$\sum_{i=1}^{\infty} a_i p^{-i} = lub \left\{ \sum_{i=1}^n a_i p^{-i} \mid n \in \mathbb{N} \right\}$
	Let $p \in \mathbb{N}$. Suppose that $p > 1$. Let $a_1, a_2, a_3, \in \{0,, p - 1\}$. 1. $0 \le \sum_{i=1}^{\infty} a_i p^{-i} \le 1$. 2. $\sum_{i=1}^{\infty} a_i p^{-i} = 0$ if and only if $a_i = 0$ for all $i \in \mathbb{N}$. 3. $\sum_{i=1}^{\infty} a_i p^{-i} = 1$ if and only if $a_i = p - 1$ for all $i \in \mathbb{N}$. 4. Let $m \in \mathbb{N}$. Suppose that $m > 1$, and that $a_{m-1} \ne p - 1$. Then
Lemma 2.8.5	$\sum_{i=1}^{\infty} a_i p^{-i} \leq \sum_{i=1}^{m-2} a_i p^{-i} + \frac{a_{m-1}+1}{p^{m-1}},$
	where equality holds if and only if $a_i = p - 1$ for all $i \in \mathbb{N}$ such that $i \ge m$.

	Let $p \in \mathbb{N}$. Suppose that $p > 1$. Let $x \in (0, \infty)$.
	1. There are $k \in \mathbb{N}$, and b_0 , b_1 ,, $b_{k-1} \in \{0,, p-1\}$ and a_1 , a_2 , a_3
	$\in \{0,, p - 1\}$, such that
	$x = \sum_{i=0}^{\kappa-1} b_j p^j + \sum_{i=1}^{\infty} a_i p^{-i}.$
	$x = \sum_{j=0}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{i} p^{j}$
	2. It is possible to choose $k \in \mathbb{N}$, and b_0 , b_1 ,, $b_{k-1} \in \{0,, p - 1\}$, and $a_1, a_2, a_3 \in \{0,, p - 1\}$ in Part (1) of this theorem such that
Uniqueness of $\mathbb R$ (Theorem 2.8.6)	there is no m $\in \mathbb{N}$ such that $a_i = p - 1$ for all $i \in \mathbb{N}$ such that $i \ge m$.
	3. If x > 1, then it is possible to choose $k \in \mathbb{N}$, and $b_0, b_1,, b_{k-1} \in \mathbb{N}$
	$\{0,, p - 1\}$, and $a_1, a_2, a_3 \in \{0,, p - 1\}$ in Part (1) of this theorem such that $b_{k-1} \neq 0$.
	If $0 < x < 1$, then it is possible to choose k = 1, and b ₀ = 0, and a ₁ , a ₂ ,
	$a_3 \in \{0,, p − 1\}$ in Part (1) of this theorem.
	4. If the conditions of Parts (2) and (3) of this theorem hold, then
	the numbers $k \in \mathbb{N}$, and b_0 , b_1 ,, $b_{k-1} \in \{0,, p - 1\}$, and a_1 , a_2 , a_3
	$ \in \{0,, p - 1\}$ in Part (1) are unique .
	Let $p \in \mathbb{N}$. Suppose that $p > 1$. Let $x \in (0, \infty)$. A base p
	representation of the number x is an expression of the form $x = b_{k-1} \cdots b_1 b_0 a_1 a_2 a_3 \cdots$, where $k \in \mathbb{N}$ and $b_0, b_1, \dots, b_{k-1} \in \{0, \dots, p-1\}$
Base p Representation	and $a_1, a_2, a_3 \dots \in \{0, \dots, p-1\}$ are such that
(b _j .a _i)	
(Definition 2.8.7)	$x = \sum_{i=2}^{\kappa-1} b_j p^j + \sum_{i=1}^{\infty} a_i p^{-i}.$
	$x = \sum_{j=0}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{i} p^{j}$
Division Algorithm: ÷ (Theorem 2.8.8)	Let $a \in \mathbb{N} \cup \{0\}$ and $b \in \mathbb{N}$. Then there are unique $q, r \in \mathbb{N} \cup \{0\}$
(Theorem 2.8.8)	such that $a = bq + r$ and $0 \le r < b$. (q = quotient, r = remainder)
	Let $p \in \mathbb{N}$. Suppose that $p > 1$. Let $x \in (0, \infty)$, and let $x = b_{k-1} \cdots b_1 b_0.a_1 a_2 a_3 \cdots$ be a base p representation of x. This base p
	representation is eventually repeating if there are some $r, s \in \mathbb{N}$
Repeating Decimal (Definition 2.8.9)	such that a_j = a_{j*s} for all $j\in\mathbb{N}$ such that $j\geq r;$ in that case we write
	$\mathbf{x} = b_{k-1} \cdots b_1 b_0 \cdot a_1 a_2 a_3 \cdots a_{r-1} \overline{a_r \cdots a_{r+s-1}}.$
Rational if Repeating	Let $p \in \mathbb{N}$ Suppose that $p > 1$ Let $y \in (0, \infty)$. Then $y \in \mathbb{O}$ if and any
Decimal	Let $p \in \mathbb{N}$. Suppose that $p > 1$. Let $x \in (0, \infty)$. Then $x \in \mathbb{Q}$ if and only if x has an eventually repeating base p representation.
(Theorem 2.8.10)	a what an eventuary repeating base prepresentation.

Ch. 3.2 Limits of Functions

Theorem / Lemma /	Description
Definition	Description
	Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$, let $f: I - \{c\} \rightarrow \mathbb{R}$ be a function and let $L \in \mathbb{R}$. The number L is the limit of f as x goes to c, written $\lim_{x \to c} f(x) = L$
Limit of a Function (Definition 3.2.1)	if for each $\epsilon > 0$, there is some $\delta > 0$ such that $x \in I - \{c\}$ and $0 < x - c < \delta$ imply $ f(x) - L < \epsilon$.
	If $\lim_{x\to c} f(x) = L$, we also say that f converges to L as x goes to c.
	If f converges to some real number as x goes to c, we say that $\lim_{x \to c} f(x)$ exists.
	An open interval is an interval that does not include its end points.
	$(\forall \epsilon > 0) \ (\exists \delta > 0) \ [(x \in I - \{c\} \land x - c < \delta) \rightarrow f(x) - L < \epsilon]$
Logical Form of Limits	The order of the quantifiers in the definition of limits is absolutely crucial.
Proof Format	A typical proof that $\lim_{x \to c} f(x) = L$ must therefore have the following form: Proof . Let $\varepsilon > 0$ (argumentation)
	Let $\delta = f(\varepsilon)$ (argumentation) Suppose that $x \in I - \{c\}$ and $ x - c < \delta$ (argumentation) Therefore $ f(x) - L < \varepsilon$.
L is Unique (Lemma 3.2.2)	Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$ and let $f: I - \{c\} \rightarrow \mathbb{R}$ be a function. If $\lim_{x \to c} f(x) = L$ for some $L \in \mathbb{R}$, then L is unique.
Example Proofs (Example 3.2.3)	(1) Prove that $\lim_{x \to 4} (5x + 1) = 21$. Proof: Let $\varepsilon > 0$. Let $\delta = \varepsilon 5$. Suppose that $x \in \mathbb{R} - \{4\}$ and $ x-4 < \delta$. Then $ (5x + 1) - 21 = 5x - 20 = 5 x - 4 < 5\delta = 5 \cdot \varepsilon 5 = \varepsilon$.
	(2) Prove that $\lim_{x\to 3} (x^2 - 1) = 8$. Proof: Let $\varepsilon > 0$. Let $\delta = \min\{\varepsilon 7, 1\}$. Suppose that $x \in \mathbb{R} - \{3\}$ and $ x-3 < \delta$. Then $ x-3 < 1$, which implies that $-1 < x-3 < 1$, and therefore 2 $< x < 4$, and hence $5 < x + 3 < 7$, and we conclude that $5 < x + 3 < 7$. Then $ (x2 - 1) - 8 = x2 - 9 = x - 3 \cdot x + 3 < \delta \cdot 7 \le \varepsilon 7 \cdot 7 = 1$
	ε.

	(3) Prove that $\lim_{t \to \infty} \left(\frac{1}{t}\right)$ does not exist
	(3) Prove that $\lim_{x \to 0} \left(\frac{1}{x}\right)$. does not exist. Proof:
	Suppose that $\lim_{x\to 0} \left(\frac{1}{x}\right) = L$ for some $L \in \mathbb{R}$. Let $\varepsilon = L / 2$ if $L \neq 0$,
	and let $\varepsilon = 1$ if L = 0. We consider the case when L > 0; the other
	cases are similar. Let δ > 0. Because L > 0, then L + ε > 0. Let x =
	min{ δ /2, 1 / (L + ϵ)}. Then x \in (0, ∞) and $ x - 0 \le \delta$ / 2 < δ . On
	the other hand, because x \leq 1 / (L + ϵ), it follows that L + $\epsilon \leq$ 1 / x,
	and hence $1/x - L \ge \epsilon$, which implies that $ 1/x - L \not< \epsilon$.
	Let $I\subseteq \mathbb{R}$ be an open interval, let $c\in I$ and let $f\colon I-\{c\}\to \mathbb{R}$ be a
Sign-Preserving Property	function. Suppose that $\lim_{x \to c} f(x)$ exists.
for Limits	1. If $\lim_{x\to c} f(x) > 0$, then there is some M > 0 and some $\delta > 0$ such
(Theorem 3.2.4)	that $x \in I - \{c\}$ and $ x - c < \delta$ imply $f(x) > M$.
	2. If $\lim_{x \to c} f(x) < 0$, then there is some N < 0 and some $\delta > 0$ such
	that $x \in I - \{c\}$ and $ x - c < \delta$ imply $f(x) < N$.
Bounded	Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$ and let $f: I - \{c\} \rightarrow \mathbb{R}$ be a
(Lemma 3.2.7)	function. If $\lim_{x\to c} f(x)$ exists, then there is some $\delta > 0$ such that the
	restriction of f to $(I - \{c\}) \cap (c - \delta, c + \delta)$ is bounded.
Zoro	Let $I\subseteq \mathbb{R}$ be an open interval, let $c\in I$ and let $f,g\colon I-\{c\}\to \mathbb{R}$ be
Zero (Lemma 3.2.8)	functions. Suppose that $\lim_{x \to c} f(x) = 0$, and that g is bounded. Then
· · · · ·	$\lim_{x \to c} f(x) g(x) = 0.$
	Let A,B be sets, let f: A $\to \mathbb{R}$ and g: B $\to \mathbb{R}$ be functions and let $k \in$
	R.
	1. The function $f + g: A \cap B \rightarrow \mathbb{R}$ is defined by $[f + g](x) = f(x) + g(x)$
	for all $x \in A \cap B$.
	2. The function f – g: A \cap B $\rightarrow \mathbb{R}$ is defined by [f – g](x) = f(x) – g(x)
	for all $x \in A \cap B$.
Functions for +, -, k, ●, ÷ (Definition 3.2.9)	3. The function k f: $A \to \mathbb{R}$ is defined by [k f](x) = k f(x) for all $x \in A$.
	4. The function $f \cdot g: A \cap B \rightarrow \mathbb{R}$ is defined by $[f \cdot g](x) = f(x) \cdot g(x)$
	for all $x \in A \cap B$.
	5. Let C = (A \cap B) – {b \in B g(b) = 0}. The function f g: C $\rightarrow \mathbb{R}$ is
	defined by $[f/g](x) = f(x) / g(x)$ for all $x \in C$.
	6. The function $ f : A \rightarrow \mathbb{R}$ is defined by $ f (x) = f(x) $ for all x
	€ A.

Limits for +, -, k, ∙, ÷ (Theorem 3.2.10)	Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$, let $f,g: I - \{c\} \to \mathbb{R}$ be functions and let $k \in \mathbb{R}$. Suppose that $\lim_{x \to c} f(x)$ and $\lim_{x \to c} g(x)$ exist. 1. $\lim_{x \to c} [f + g](x)$ exists and $\lim_{x \to c} [f + g](x) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$. 2. $\lim_{x \to c} [f - g](x)$ exists and $\lim_{x \to c} [f - g](x) = \lim_{x \to c} f(x) - \lim_{x \to c} f(x) = \lim_{x \to c} f(x) - \lim_{x \to c} f(x) = \lim_{x \to c} f(x) - \lim_{x \to c} f(x) = \lim_{x \to$
	$\lim_{x \to c} g(x).$ 3. $\lim_{x \to c} [k \cdot f](x) \text{ exists and } \lim_{x \to c} [k \cdot f](x) = k \cdot \lim_{x \to c} f(x).$ 4. $\lim_{x \to c} [f \cdot g](x) \text{ exists and } \lim_{x \to c} [f \cdot g](x) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x).$
	5. $\lim_{x \to c} \left[\frac{f}{g} \right](x) \text{ exists and } \lim_{x \to c} \left[\frac{f}{g} \right](x) = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} \text{ if } \lim_{x \to c} g(x) \neq 0.$
Limits for f o g (Theorem 3.2.12)	Let I,J $\subseteq \mathbb{R}$ be open intervals, let c \in I, let d \in J and let g: I – {c} \rightarrow J
	– {d} and f: J – {d} $ ightarrow \mathbb{R}$ be functions. Suppose that $\lim_{y ightarrow c} g(y) = d$
	and that $\lim_{x \to d} f(x)$ exist. Then $\lim_{y \to c} (f \circ g)(y)$ exists, and
	$\lim_{y \to c} (f \circ g)(y) = \lim_{x \to d} f(x).$
Limits: f≤g (Theorem 3.2.13)	Let $I\subseteq \mathbb{R}$ be an open interval, let $c\in I$ and let f,g: I – $\{c\} \to \mathbb{R}$ be
	functions. Suppose that $f(x) \le g(x)$ for all $x \in I - \{c\}$. If $\lim_{x \to c} f(x)$ and
	$\lim_{x \to c} g(x) \text{ exist, then } \lim_{x \to c} f(x) \leq \lim_{x \to c} g(x).$
Squeeze Theorem for Functions (Theorem 3.2.14)	Let $I\subseteq \mathbb{R}$ be an open interval, let $c\in I$ and let f,g,h: I – $\{c\}\to \mathbb{R}$ be
	functions. Suppose that $f(x) \le g(x) \le h(x)$ for all $x \in I - \{c\}$. If
	$\lim_{x \to c} f(x) = L = \lim_{x \to c} h(x) \text{ for some } L \in \mathbb{R}, \text{ then } \lim_{x \to c} g(x) \text{ exists and}$ $\lim_{x \to c} g(x) = L.$
	$\frac{1}{X \to C} = C$

Left/Right Hand Limits (Definition 3.2.15)	Let $I \subseteq \mathbb{R}$ be an interval, let $c \in I$, let $f: I - \{c\} \rightarrow \mathbb{R}$ be a function and let $L \in \mathbb{R}$. 1. Suppose that c is not a right endpoint of I. The number L is the right-hand limit of f at c, written $\lim_{x \rightarrow c+} f(x) = L,$ if for each $\varepsilon > 0$, there is some $\delta > 0$ such that $x \in I - \{c\}$ and $c < x < c + \delta$ imply $ f(x) - L < \varepsilon$. If $\lim_{x \rightarrow c+} f(x) = L$, we also say that f converges to L as x goes to c from the right. If f converges to some real number as x goes to c from the right, we say that $\lim_{x \rightarrow c+} f(x)$ exists. 2. Suppose that c is not a left endpoint of I. The number L is the left-hand limit of f at c, written $\lim_{x \rightarrow c-} f(x) = L,$ if for each $\varepsilon > 0$, there is some $\delta > 0$ such that $x \in I - \{c\}$ and $c - \delta < x < c$ imply $ f(x) - L < \varepsilon$. If $\lim_{x \rightarrow c-} f(x) = L$, we also say that f converges to L as x goes to c from the left. If f converges to some real number as x goes to c from the left. If f converges to some real number as x goes to c from the left. If f converges to some real number as x goes to c from the left. If f converges to some real number as x goes to c from the left. If f converges to some real number as x goes to c from the left. We say that $\lim_{x \rightarrow c-} f(x) = L$, exists.
All 3 Limits are Equal	3. A one-sided limit is either a right-hand limit or a left-hand limit.
(Lemma 3.2.17)	Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$ and let $f: I - \{c\} \to \mathbb{R}$ be a function. Then $\lim_{x \to c} f(x)$ exists if and only if $\lim_{x \to c^+} f(x)$ and $\lim_{x \to c^-} f(x)$ exist and are equal, and if these three limits exist then they are equal.
y = mx + b	Let m,b,c $\in \mathbb{R}$. Using only the definition of limits, prove that
(Exercise 3.2.1)	$\lim_{x \to c} (mx + b) = mc + b$
Exercise 3.2.5	Let $J \subseteq I \subseteq \mathbb{R}$ be open intervals, let $c \in J$ and let $f: I - \{c\} \rightarrow \mathbb{R}$ be a function. Prove that $\lim_{x \to c} f(x)$ exists if and only if $\lim_{x \to c} f _J(x)$ exists, and if these limits exist, then they are equal.

Ch. 3.3 Continuity

Theorem / Lemma / Corollary / Definition / Examples	Description
	Let $A \subseteq \mathbb{R}$ be a set, and let $f: A \rightarrow \mathbb{R}$ be a function.
Continuity: ε, δ (Definition 3.3.1)	1. Let $c \in A$. The function f is continuous at c if for each $\varepsilon > 0$, there is some $\delta > 0$ such that $x \in A$ and $ x - c < \delta$ imply $ f(x) - f(c) < \varepsilon$. The function f is discontinuous at c if f is not continuous at c; in that case we also say that f has a discontinuity at c.
	2. The function f is continuous if it is continuous at every number in A. The function f is discontinuous if it is not continuous.
Continuity: f(c) (Lemma 3.3.2)	Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$ and let $f: I \rightarrow \mathbb{R}$ be a function. Then f is continuous at c if and only if $\lim_{x \to c} f(x)$ exists and $\lim_{x \to c} f(x) = f(c)$.
Logical Form of Continuity	$(\forall c \in A)$ [f is continuous at c] which can be written completely in symbols as $(\forall c \in A) (\forall \epsilon > 0) (\exists \delta > 0) [(x \in A \land x - c < \delta) \rightarrow f(x) - f(c) < \epsilon].$ The order of the quantifiers is crucial. Applies where we can find δ that depends upon ϵ and c.
Example 3.3.3	 (1) f(x) = mx + b (2) p(x) = 1/x (3) Standard elementary functions (that is, polynomials, power functions, logarithms, exponentials and trigonometric functions). All of these functions are continuous. (4) y = tan(x) (5) g(x) = x /x (6) r(x) = 1 or 0 (7) s(x) = 1/q
Sign-Preserving Property	Let $A \subseteq \mathbb{R}$ be a non-empty set, let $c \in A$ and let $f: A \rightarrow \mathbb{R}$ be a function. Suppose that f is continuous at c.
for Continuous Functions (Theorem 3.3.4)	1. If $f(c) > 0$, then there is some M > 0 and some $\delta > 0$ such that $x \in A$ and $ x - c < \delta$ imply $f(x) > M$.
	2. If f(c) < 0, then there is some N < 0 and some δ > 0 such that x \in A and $ x - c < \delta$ imply f(x) < N.
+, -, ·, ÷ Continuous at x = c (Theorem 3.3.5)	Let $A \subseteq \mathbb{R}$ be a non-empty set, let $c \in A$, let f,g: $A \to \mathbb{R}$ be functions and let $k \in \mathbb{R}$. Suppose that f and g are continuous at c. 1. f + g is continuous at c. 2. f - g is continuous at c. 3. k · f is continuous at c. 4. f · g is continuous at c. 5. If g(c) $\neq 0$, then f/g is continuous at c.

+, -, ·, ÷ Continuous Everywhere (Corollary 3.3.6)	Let $A \subseteq \mathbb{R}$ be a non-empty set, let f,g: $A \to \mathbb{R}$ be functions and let $k \in \mathbb{R}$. Suppose that f and g are continuous. Then f + g, f – g, k · f and f · g are continuous, and if g(x) \neq 0 for all x \in I then f / g is continuous.
Example 3.3.7	(1) $f_n(x) = x^n$ (2) $p(x) = 1/x$
Composite Functions (f ° g) (Theorem 3.3.8)	Let $A, B \subseteq \mathbb{R}$ be non-empty sets, let $c \in A$ and let $g: A \to B$ and $f: B \to \mathbb{R}$ be functions. 1. Suppose that A is an open interval. If $\lim_{x\to c} g(x)$ exists and is in B, and if f is continuous at $\lim_{x\to c} g(x)$, then $\lim_{x\to c} f(g(c)) = f(\lim_{x\to c} g(x))$. 2. If g is continuous at c, and if f is continuous at g(c), then $f \circ g$ is continuous at c. 3. If g and f are continuous, then $f \circ g$ is continuous.
Composition of Two Discontinuous Functions (Example 3.3.9)	(1) h(x) = 1 or 0, k(x) = 2 or 0 m → Better = Continuous (2) r(x) = 1 or 0, s(x) = $1/q$ → Worse Discontinuity
Pasting Lemma (Lemma 3.3.10)	Let $[a,b] \subseteq \mathbb{R}$ and $[b, c] \subseteq \mathbb{R}$ be non-degenerate closed bounded intervals, and let f: $[a,b] \rightarrow \mathbb{R}$ and g: $[b,c] \rightarrow \mathbb{R}$ be functions. Let h: $[a,c] \rightarrow \mathbb{R}$ be defined by $h(x) = (f(x), \text{ if } x \in [a,b], g(x), \text{ if } x \in [b,c]$. If f and g are continuous, and if $f(b) = g(b)$, then h is continuous.
Extension of a Function (Example 3.3.11)	$f(x) = x \rightarrow Can$ be extended $p(x) = 1/x \rightarrow Cannot$ be extended

Ch. 3.4 Uniform Continuity

Lemma / Corollary / Definition / Examples	Description
Uniformly Continuous (UC) (Definition 3.4.1)	Let $A \subseteq \mathbb{R}$ be a set, and let $f: A \rightarrow \mathbb{R}$ be a function. The function f is uniformly continuous if for each $\varepsilon > 0$, there is some $\delta > 0$ such that $x, y \in A$ and $ x - y < \delta$ imply $ f(x) - f(y) < \varepsilon$.
Logical Form of UC	$(\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in A) (\forall y \in A) [x - y < \delta \rightarrow f(x) - f(y) < \varepsilon]$ The order of the quantifiers is crucial. Applies where we can find δ that depends only upon ε , and not c.
UC → C (Lemma 3.4.2)	Let $A \subseteq \mathbb{R}$ be a set, and let f: $A \rightarrow \mathbb{R}$ be a function. If f is uniformly continuous, then f is continuous.
Example 3.4.3	(1) $f(x) = mx + b$ \rightarrow Is UC (2) $g(x) = 1/x$ where $x \in \mathbb{R} - \{0\} \rightarrow$ Is not UC (3) $g(x) = 1/x$ where $x \in (1, \infty) \rightarrow$ Is UC
Close Bounded Interval C → UC (Theorem 3.4.4)	Let $C \subseteq \mathbb{R}$ be a <u>closed bounded interval</u> , and let $f: C \rightarrow \mathbb{R}$ be a function. If f is continuous, then f is uniformly continuous.
UC → Bounded (Theorem 3.4.5)	Let $A \subseteq \mathbb{R}$ be a non-empty set, and let $f: A \to \mathbb{R}$ be a function. Suppose that A is bounded. If f is uniformly continuous, then f is bounded.
C → Bounded (Corollary 3.4.6)	Let $C \subseteq \mathbb{R}$ be a closed bounded interval, and let $f: C \to \mathbb{R}$ be a function. If f is continuous, then f is bounded.

Ch. 3.5 Two Important Theorems

Axiom / Theorem /	Description
Lemma / Definition	Description
Extreme Value Theorem: Min. and Max. Exist (Theorem 3.5.1)	Let $C \subseteq \mathbb{R}$ be a closed bounded interval, and let $f: C \to \mathbb{R}$ be a function. Suppose that f is continuous. Then there are $x_{min}, x_{max} \in C$ such that $f(x_{min}) \leq f(x) \leq f(x_{max})$ for all $x \in C$.
Intermediate Value Theorem (Theorem 3.5.2)	Let $[a,b] \subseteq \mathbb{R}$ be a closed bounded interval, and let $f: [a,b] \to \mathbb{R}$ be a function. Suppose that f is continuous. Let $r \in \mathbb{R}$. If r is strictly between f(a) and f(b), then there is some $c \in (a,b)$ such that f(c) = r. We can assume f(a) < r < f(b).
Contrapositive for a Proof (Lemma 3.5.3)	Let F be an ordered field. Suppose that F does not satisfy the Least Upper Bound Property. Let $A \subseteq F$ be a non-empty set such that A is bounded above, but A has no least upper bound. Let $a \in$ A, and let $b \in F$ be an upper bound of A. Let $Q = \{x \in [a,b] \mid x \text{ is an} upper bound of A\}$ and $P = [a,b] - Q$. 1. $P \cup Q = [a,b]$ and $P \cap Q = \emptyset$. 2. $a < b$, and $A \cap [a,b] \subseteq P$, and $a \in P$, and $b \in Q$. 3. If $x \in P$ and $z \in Q$, then $x < z$. 4. If $x \in P$, then there is some $y \in P$ such that $x < y$. If $z \in Q$, then there is some $w \in Q$ such that $w < z$. 5. The set P does not have a least upper bound, and the set Q does not have a greatest lower bound.
Theorem 3.5.4	The following are equivalent. a1. The Least Upper Bound Property. a2. The Greatest Lower Bound Property. b. The Heine–Borel Theorem. c. The Extreme Value Theorem. d. The Intermediate Value Theorem.

Ch. 4.2 The Derivative

Definition / Theorem / Example	Description
	Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$ and let $f: I \rightarrow \mathbb{R}$ be a function.
	1. The function f is differentiable at c if
Definition of Derivative with x - c	$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$
(Definition 4.2.1)	exists; if this limit exists, it is called the derivative of f at c, and it is denoted f'(c).
	2. The function f is differentiable if it is differentiable at every number in I. If f is differentiable, the derivative of f is the function $f': I \rightarrow \mathbb{R}$ whose value at x is $f'(x)$ for all $x \in I$.
	Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$ and let $f: I \rightarrow \mathbb{R}$ be a function. Then f is differentiable at c if and only if
Definition of Derivative	
with h	$\lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$
(Lemma 4.2.2)	$h \rightarrow 0$ h
	exists, and if this limit exists it equals f'(c).
	(1) f(x) = mx + b so (mx + b)' = m.
Example 4.2.3	(2) $g(x) = x^2 \operatorname{so} g'(x) = 2x$
	(3) $k(x) = x so k'(x) does not exist unless x \in (0, \infty)$.
Differentiable →	Let $I \subseteq \mathbb{R}$ be an open interval, and let $f: I \rightarrow \mathbb{R}$ be a function. Let c
Continuous	El.
(Theorem 4.2.4)	If f is differentiable at c, then f is continuous at c. If f is differentiable, then f is continuous.
	(1) $f(x) = \{x^2 \sin(1/x^2), \text{ if } x \neq 0\}$
	$\{0, \text{ if } x = 0\}.$
Continuous vs.	So, f' exists everywhere, but f' is not continuous.
Differentiable	
(Example 4.2.5)	(2) $g(x) = \{ x^2, \text{ if } x \ge 0 \}$
	$\{-x^2, \text{ if } x < 0\}$
	So, g' is continuous, however g' is not differentiable.

n th Derivatives (Definition 4.2.6)	Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$ and let $f: I \to \mathbb{R}$ be a function. Suppose that f is differentiable at c. The function f is twice differentiable at c if f' is differentiable at c. If f' is differentiable at c, the derivative $(f')'(c)$ is called the second derivative of f at c, and it is denoted f''(c). The function f is twice differentiable if it is twice differentiable at every number in I. If f is twice differentiable, the second derivative of f is the function f'': $I \to \mathbb{R}$ whose value at x is f''(x) for all $x \in I$. The n th derivative of f for all $n \in \mathbb{N}$ is defined as follows, using Definition by Recursion. If f is differentiable at c, the first derivative of f at c is simply the derivative of f at c.
	Suppose that f is n-1 times differentiable at c. The (n-1)-st derivative of f at c is denoted $f^{(n-1)}(c)$. The function f is n times differentiable at c if $f^{(n-1)}$ is differentiable
	at c. If $f^{(n-1)}$ is differentiable at c, the derivative $(f^{(n-1)})'(c)$ is called the n th derivative of f at c, and it is denoted $f^{(n)}(c)$.
	The function f is n times differentiable if it is n times differentiable at every number in I.
	If f is n times differentiable, the n th derivative of f is the function $f^{(n)}$: $I \rightarrow \mathbb{R}$ whose value at x is $f^{(n)}(x)$ for all $x \in I$.
	The 0th derivative of f is $f^{(0)} = f$.
	Let $I \subseteq \mathbb{R}$ be an open interval, and let $f: I \to \mathbb{R}$ be a function.
	The function f is continuously differentiable if f is differentiable and f' is continuous.
Continuously/Infinitely Differentiable (Definition 4.2.7)	Let $n \in \mathbb{N}$. The function f is continuously differentiable of order n if $f^{(i)}$ exists and is continuous for all $i \in \{1,, n\}$.
	The function f is infinitely differentiable (also called smooth) if $f^{(i)}$ exists all $i \in \mathbb{N}$.

	Let $I\subseteq \mathbb{R}$ be a non-degenerate interval, let $c\in I$ and let $f\colon I\to \mathbb{R}$ be a function.
	1. Suppose that c is a left endpoint of I. The function f is differentiable at c if the limit
	$\lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h}$
	exists; if this limit exists, it is called the one-sided derivative of f at c, and it is denoted f'(c).
One-Sided Derivatives (Definition 4.2.8)	2. Suppose that c is a right endpoint of I. The function f is differentiable at c if the limit
	$\lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} = \lim_{h \to 0^{-}} \frac{f(c + h) - f(c)}{h}$
	exists; if this limit exists, it is called the one-sided derivative of f at c, and it is denoted f'(c).
	3. The function f is differentiable if the restriction of f to the interior of I is differentiable in the usual sense, and if f is differentiable at the endpoints of I in the sense of Parts (1) and (2) of this definition if there are endpoints.
	Let I $\subseteq \mathbb{R}$ be an open interval, let c \in I and let f: I $ ightarrow \mathbb{R}$ be a
	function. The function f is symmetrically differentiable at c if
Symmetric Derivative (Exercise 4.2.7)	$\lim_{h \to 0} \frac{f(c+h) - f(c-h)}{2h}$
	exists; if this limit exists, it is called the symmetric derivative of f at c.

Ch. 4.3 Computing Derivatives

Theorem / Corollary	Description
Derivatives: +, −, •, ÷ (Theorem 4.3.1)	Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$, let f,g: $I \to \mathbb{R}$ be functions and let $k \in \mathbb{R}$. Suppose that f and g are differentiable at c. 1. f + g is differentiable at c and $[f + g]'(c) = f'(c) + g'(c)$. 2. f - g is differentiable at c and $[f - g]'(c) = f'(c) - g'(c)$. 3. kf is differentiable at c and $[kf]'(c) = k f'(c)$. 4. (Product Rule) fg is differentiable at c and $[fg]'(c) = f'(c)g(c) + f(c)g'(c)$. 5. (Quotient Rule) If $g(c) \neq 0$, then f/g is differentiable at c and $\left[\frac{f}{g}\right]'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{[g(c)]^2}$
Entire Function (Corollary 4.3.2)	Let $I \subseteq \mathbb{R}$ be an open interval, let f,g: $I \rightarrow \mathbb{R}$ be functions and let $k \in \mathbb{R}$. If f and g are differentiable, then f + g, f – g, kf and fg are differentiable, and if g(x) \neq 0 for all x \in I then f/g is differentiable.
Chain Rule (Theorem 4.3.3)	Let $I, J \subseteq \mathbb{R}$ be open intervals, let $c \in I$ and let $f: I \rightarrow J$ and $g: J \rightarrow \mathbb{R}$ be functions. Suppose that f is differentiable at c, and that g is differentiable at f(c). Then $g \circ f$ is differentiable at c and $[g \circ f]'(c) =$ g' (f(c))· f'(c).
Chain Rule Differentiable (Corollary 4.3.4)	Let $I, J \subseteq \mathbb{R}$ be open intervals, and let $f: I \rightarrow J$ and $g: J \rightarrow \mathbb{R}$ be functions. If f and g are differentiable, then $g \circ f$ is differentiable.

 $\frac{(fg)'(c)}{x-c} = f(x)\frac{g(x)-g(c)}{x-c} + g(c)\frac{f(x)-f(c)}{x-c}$ f'(c)

Ch. 4.4 The Mean Value Theorem

Axiom / Theorem / Lemma / Definition	Description
	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, let $c \in (a,b)$ and let f: $[a,b] \rightarrow \mathbb{R}$ be a function. Suppose that f is differentiable at c. If either $f(c) \ge f(x)$ for all $x \in [a,b]$ or $f(c) \le f(x)$ for all $x \in [a,b]$, then $f'(c) = 0$.
Min/Max at a Point, f'(c) = 0 (Lemma 4.4.1)	f $a x_n \rightarrow c \leftarrow y_n b$
f'(c) = 0, But Not a Min/Max (Example 4.4.2)	Let f: $[-1,1] \rightarrow \mathbb{R}$ be defined by $f(x) = x^3$ for all $x \in [-1,1]$. It can be verified using the definition of derivatives that $f'(0) = 0$; the details are left to the reader. On the other hand, it is certainly not the case that $f(0) \ge f(x)$ for all $x \in [-1,1]$, or that $f(0) \le f(x)$ for all $x \in [-1,1]$.
Rolle's Theorem: f(a) = f(b) (Lemma 4.4.3)	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, and let $f: [a,b] \rightarrow \mathbb{R}$ be a function. Suppose that f is continuous on $[a,b]$ and differentiable on (a,b) . If $f(a) = f(b)$, then there is some $c \in (a,b)$ such that $f'(c) = 0$. f(a) = f(b) $f(a) = f(b)$ $f(a) = f(b)$ Note: Rolle's Theorem is a special case of the Mean Value Theorem where $f(a) = f(b)$.

Cauchy's Mean Value Theorem (Theorem 4.4.5)	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, and let f,g: $[a,b] \to \mathbb{R}$ be functions. Suppose that f and g are continuous on $[a,b]$ and differentiable on (a,b). Then there is some $c \in (a,b)$ such that [f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c).
Cauchy → Mean Value Theorem	The Mean Value Theorem is the special case of Cauchy's Mean Value Theorem (Theorem 4.4.5) where the function g is defined by $g(x) = x$ for all $x \in [a,b]$.
Taylor's Theorem (Theorem 4.4.6)	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, let $c \in (a,b)$, let f: $[a,b] \to \mathbb{R}$ be a function and let $n \in \mathbb{N} \cup \{0\}$. Suppose that $f^{(k)}$ exists and is continuous on $[a,b]$ for each $k \in \{0,, n\}$, and that $f^{(n+1)}$ exists on (a,b) . Let $x \in [a,b]$. Then there is some p strictly between x and c (except that $p = c$ when $x = c$) such that $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + \frac{f^{(k+1)}(p)}{(n+1)!} (x - c)^{n+1}.$
Parallel Functions (Lemma 4.4.7)	Let $I \subseteq \mathbb{R}$ be a non-degenerate interval, and let f,g: $I \to \mathbb{R}$ be function. Suppose that f and g are continuous on I and differentiable on the interior of I. 1. f'(x) = 0 for all x in the interior of I if and only if f is constant on I. 2. f'(x) = g'(x) for all x in the interior of I if and only if there is some $C \in \mathbb{R}$ such that $f(x) = g(x) + C$ for all $x \in I$.
Antiderivative (F' = f) (Definition 4.4.8)	Let $I \subseteq \mathbb{R}$ be an open interval, and let $f: I \to \mathbb{R}$ be a function. An antiderivative of f is a function F: $I \to \mathbb{R}$ such that F is differentiable and F' = f.

Constant of Integration (+ C) (Corollary 4.4.9)	Let $I \subseteq \mathbb{R}$ be a non-degenerate open interval, and let $f: I \to \mathbb{R}$ be a function. If F,G: $I \to \mathbb{R}$ are antiderivatives of f, then there is some $C \in \mathbb{R}$ such that $F(x) = G(x) + C$ for all $x \in I$.
Intermediate Value Theorem for Derivatives (Theorem 4.4.10)	Let $I \subseteq \mathbb{R}$ be an open interval, and let $f: I \to \mathbb{R}$ be a function. Suppose that f is differentiable. Let $a, b \in I$, and suppose that $a < b$. Let $r \in \mathbb{R}$. If r is strictly between f'(a) and f'(b), then there is some $c \in (a,b)$ such that f'(c) = r.
g(x) ≠ f'(x) (Example 4.4.11)	Let g: $\mathbb{R} \to \mathbb{R}$ be defined by $g(x) = \begin{cases} 1, & if \ x \leq 1 \\ 2, & if \ x > 1. \end{cases}$ Then g is not the derivative of any function, because it does not satisfy the conclusion of the Intermediate Value Theorem for Derivatives (Theorem 4.4.10).

Axiom / Theorem / Lemma / Definition	Description
	Let $A \subseteq \mathbb{R}$ be a set, and let $f: A \rightarrow \mathbb{R}$ be a function. 1. The function f is increasing if $x < y$ implies $f(x) \le f(y)$ for all $x, y \in A$.
	2. The function f is strictly increasing if $x < y$ implies $f(x) < f(y)$ for all x, $y \in A$.
f(x) vs. Increasing / Decreasing / Monotone	3. The function f is decreasing if $x < y$ implies $f(x) \ge f(y)$ for all $x, y \in A$.
(Definition 4.5.1)	4. The function f is strictly decreasing if $x < y$ implies $f(x) > f(y)$ for all x, $y \in A$.
	5. The function f is monotone if it is either increasing or decreasing.
	6. The function f is strictly monotone if it is either strictly increasing or strictly decreasing.
	Let $I \subseteq \mathbb{R}$ be a non-degenerate interval, and let $f: I \rightarrow \mathbb{R}$ be a function. Suppose that f is continuous on I and differentiable on the interior of I.
f(),) and the second second	1. $f'(x) \ge 0$ for all x in the interior of I if and only if f is increasing on I.
f'(x) vs. Increasing (Theorem 4.5.2)	2. If $f'(x) > 0$ for all x in the interior of I, then f is strictly increasing on I.
	3. $f'(x) \le 0$ for all x in the interior of I if and only if f is decreasing on I.
	4. If $f'(x) < 0$ for all x in the interior of I, then f is strictly decreasing on I.
	Let f: $\mathbb{R} \to \mathbb{R}$ be defined by f(x) = x ³ for all $x \in \mathbb{R}$. The function f is strictly increasing, as seen by Exercise 2.3.3 (1);
	that exercise does not make use of derivatives. However, we know by Exercise 4.3.5 that $f'(x) = 3x^2$ for all $x \in \mathbb{R}$,
Example 4.5.3	and hence $f'(0) = 0$.
	Therefore Theorem 4.5.2 (2) cannot be made into an "if and only if" statement.
	A similar example shows that Theorem 4.5.2 (4) cannot be made into an "if and only if" statement.

Ch. 4.5 Increasing and Decreasing Functions, Part I: Local and Global Extrema

Local/Global Extremum (Definition 4.5.4)	Let $A \subseteq \mathbb{R}$ be a set, let $c \in A$ and let $f: A \rightarrow \mathbb{R}$ be a function. 1. The number c is a local maximum of f if there is some $\delta > 0$ such that $x \in A$ and $ x - c < \delta$ imply $f(x) \le f(c)$. 2. The number c is a local minimum of f if there is some $\delta > 0$ such that $x \in A$ and $ x - c < \delta$ imply $f(x) \ge f(c)$. 3. The number c is a local extremum of f if it is either a local maximum or a local minimum. 4. The number c is a global maximum of f if $f(x) \le f(c)$ for all $x \in A$. 5. The number c is a global minimum of f if $f(x) \ge f(c)$ for all $x \in A$. 6. The number c is a global extremum of f if it is either a global maximum or a global minimum.
Local Min/Max (Lemma 4.5.5)	maximum or a global minimum. Let $A \subseteq \mathbb{R}$ be a set, let $c \in A$ and let $f: A \to \mathbb{R}$ be a function. 1. If there is some $\delta > 0$ such that $f _{A \cap (c-\delta, c]}$ is increasing and $f _{A \cap (c, c+\delta)}$ is decreasing, then c is a local maximum of f. 2. If there is some $\delta > 0$ such that $f _{A \cap (c-\delta, c]}$ is decreasing and $f _{A \cap (c, c+\delta)}$ is increasing, then c is a local minimum of f.
Critical Point (Definition 4.5.6)	Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$ and let $f: I \to \mathbb{R}$ be a function. The number c is a critical point of f if either f is differentiable at c and f 0 (c) = 0, or f is not differentiable at c.
Extremum → Critical Point (Lemma 4.5.7)	Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$ and let $f: I \to \mathbb{R}$ be a function. If c is a local extremum of f, then c is a critical point of f.
Example 4.5.8	Let f: $[-1,1] \rightarrow \mathbb{R}$ be defined by f(x) = x ³ for all $x \in [-1,1]$. Because f'(x) = 3x ² for all $x \in \mathbb{R}$, then f'(0) = 0, and hence 0 is a critical point of f. However, as remarked in Example 4.5.3, the function f is strictly increasing, and therefore 0 is neither a local maximum nor a local minimum of f.
First Derivative Test (Theorem 4.5.9)	Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$ and let $f: I \to \mathbb{R}$ be a function. Suppose that c is a critical point of f, and that f is continuous on I and differentiable on $I - \{c\}$. 1. Suppose that there is some $\delta > 0$ such that $x \in I$ and $c - \delta < x < c$ imply $f'(x) \ge 0$, and that $x \in I$ and $c < x < c + \delta$ imply $f'(x) \le 0$. Then c is a local maximum of f. 2. Suppose that there is some $\delta > 0$ such that $x \in I$ and $c - \delta < x < c$ imply $f'(x) \le 0$, and that $x \in I$ and $c < x < c + \delta$ imply $f'(x) \ge 0$. Then c is a local minimum of f. 3. Suppose that there is some $\delta > 0$ such that $x \in I - \{c\}$ and $ x - c < \delta$ imply $f'(x) > 0$, or that $x \in I - \{c\}$ and $ x - c < \delta$ imply $f'(x) < 0$. Then c is not a local extremum of f.

Second Derivative Test (Theorem 4.5.10)	Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$ and let $f: I \to \mathbb{R}$ be a function. Suppose that f is differentiable, that $f'(c) = 0$ and that f is twice differentiable at c. 1. If $f''(c) > 0$, then c is a local minimum of f. 2. If $f'(c) < 0$, then c is a local maximum of f.
	(1) Let f,g: $\mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3$ and $g(x) = x^4$ for all $x \in \mathbb{R}$. It is straightforward to verify that $f'(0) = 0$ and $g'(0) = 0$, and that $f''(0) = 0$ and $g'(0) = 0$.
Example 4.5.11	Because $x^4 = (x^2)^2 \ge 0$ for all $x \in \mathbb{R}$, then 0 is a local (and also global) minimum of g. As noted in Example 4.5.8, the number 0 is not a local extremum of f.
	(2) Let $k: \mathbb{R} \to \mathbb{R}$ be defined by $k(x) = x $ for all $x \in \mathbb{R}$. We saw in Example 4.2.3 (3) that k is not differentiable at 0, and hence 0 is a critical point of k. We also saw that $k'(x) = -1$ for all $x \in (-\infty, 0)$, and $k'(x) = 1$ for all $x \in (0, \infty)$. Because k is not differentiable at 0, we cannot apply the Second Derivative Test (Theorem 4.5.10) to k at 0. However, the First Derivative Test (Theorem 4.5.9) can still be applied, and we see that 0 is a local minimum of k, which is just what we would expect by looking at the graph of k.
Local → Global (Theorem 4.5.12)	 Let I ⊆ ℝ be an open interval, let c ∈ I and let f: I → ℝ be a function. Suppose that f is continuous, and that c is the only critical point of f. 1. If c is a local maximum, then it is a global maximum. 2. If c is a local minimum, then it is a global minimum.

Ch. 4.6 Increasing and Decreasing Functions, Part II: Further Topics

Axiom / Theorem / Lemma / Definition	Description
	Let f: $\mathbb{R} \to \mathbb{R}$ be defined by f(x) = x ³ for all x $\in \mathbb{R}$.
	Intuitively, we know that the function f is bijective, and hence it
	has an inverse function f ⁻¹ : $\mathbb{R} \to \mathbb{R}$, which we write as f ⁻¹ (x) = $\sqrt[3]{x}$
Not Differentiable	for all $x \in \mathbb{R}$.
(Example 4.6.1)	Moreover, we know that the graph of f ⁻¹ is obtained from the
	graph of f by reflection in the line y = x.
	Because f has a horizontal tangent line at the origin, then the
	graph of f^{-1} has a vertical tangent line at x = 0, which makes it not
	differentiable at $x = 0$.
	Let $I \subseteq \mathbb{R}$ be a non-degenerate open interval, and let $f: I \rightarrow \mathbb{R}$ be a function. Suppose that f is strictly monotone .
	1. The function f: $I \rightarrow f(I)$ is bijective .
	2. Suppose that f is continuous. Then f(I) is a non-degenerate open
	interval, and one of the following holds:
Bounded Intervals	a. If the interval f(I) is bounded, then f(I) = (glb f(I),lub f(I)).
(Lemma 4.6.2)	b. If the interval f(I) is bounded above but is not bounded
	below, then $f(I) = (-\infty, lub f(I))$.
	c. If the interval f(I) is bounded below but is not bounded
	above, then $f(I) = (glb f(I), \infty)$.
	d. If the interval $f(I)$ is not bounded above and is not bounded below, then $f(I) = \mathbb{R}$.
	We want to show that the square root function is continuous.
	Let f: $(0, \infty) \rightarrow \mathbb{R}$ be defined by $f(x) = x^2$ for all $x \in \mathbb{R}$.
	By Exercise 3.5.6 (1) we see that f is strictly increasing, and by
	Example 3.3.7 (1) we see that f is continuous.
Example 4.6.3	Exercise 3.5.6 implies that $f((0, \infty)) = (0, \infty)$.
	It then follows from Lemma 4.6.2 (3) that f^{-1} : $(0, \infty) \rightarrow (0, \infty)$ is
	continuous and strictly increasing.
	By Definition 2.6.10 we see that $f^{-1}(x) = \sqrt[2]{x}$ for all $x \in (0, \infty)$. The continuity of this function could also be shown directly by an
	ϵ - δ proof, but Lemma 4.6.2 allows us to avoid that.
	Let $I \subseteq \mathbb{R}$ be a non-degenerate open interval, and let $f: I \rightarrow \mathbb{R}$ be a
	function. Suppose that f is differentiable, and that $f'(x) \neq 0$ for all x
	El.
	1. The function f is strictly monotone.
Inverse Derivatives	2. The function f: $I \rightarrow f(I)$ is bijective.
(Theorem 4.6.4)	3. The function f^{-1} : $f(I) \rightarrow I$ is differentiable.
	4. The derivative of f ⁻¹ is given by ¹
	$[f^{-1}]'(x) = \frac{1}{f'(f^{-1}(x))}$
	, , , , , , , , , , , , , , , , , , , ,
	for all $x \in f(I)$.

Secant Line (Definition 4.6.5)	Let $I \subseteq \mathbb{R}$ be an open interval, let $a, b \in I$ and let $f: I \to \mathbb{R}$ be a function. Suppose that $a < b$. The secant line through $(a, f(a))$ and $(b, f(b))$ is the function $S_{a,b}: \mathbb{R}$ $\to \mathbb{R}$ defined by $S_{a,b}(x) = f(a)\frac{b-x}{b-a} + f(b)\frac{x-a}{b-a}$ for all $x \in \mathbb{R}$. The slope of the secant line through $(a, f(a))$ and $(b, f(b))$, denoted $M_{a,b}$, is defined by $M_{a,b} = \frac{f(b) - f(a)}{b-a}$.
Function vs Secant Line (Theorem 4.6.6)	Let $I \subseteq \mathbb{R}$ be an open interval, and let $f: I \to \mathbb{R}$ be a function. The following are equivalent. a. If $a, b \in I$ and $a < b$, then $f(x) \le S_{a,b}(x)$ for all $x \in [a,b]$ (Function Lies Below Its Secant Lines). b. If $a, b, c \in I$ and $a < b < c$, then $M_{a,b} \le M_{b,c}$ (Function Has Increasing Secant Line Slopes).
Concave Up (Definition 4.6.7)	Let $I \subseteq \mathbb{R}$ be an open interval, and let $f: I \to \mathbb{R}$ be a function. The function f is concave up if either of the two conditions in Theorem 4.6.6 hold.
Theorem 4.6.8	Let $I \subseteq \mathbb{R}$ be an open interval, and let $f: I \to \mathbb{R}$ be a function. 1. Suppose that f is differentiable. Then the two conditions in Theorem 4.6.6 hold if and only if f' is increasing on I. 2. Suppose that f is twice differentiable. Then the two conditions in Theorem 4.6.6 hold if and only if f''(x) ≥ 0 for all $x \in I$.

Ch. 5.2 The Riemann Integral

Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval.1. A partition of $[a,b]$ is a set $P = \{x_0, x_1,, x_n\}$ such that $a = x_0 < x_1 < \cdots < x_n = b$, for some $n \in \mathbb{N}$.2. If $P = \{x_0, x_1,, x_n\}$ is a partition of $[a,b]$, the norm (also called the mesh) of P, denoted $ P $, is defined by $ P = \max\{x_1 - x_0, x_2 - x_1,, x_n > x_{n-1}\}$.3. If $P = \{x_0, x_1,, x_n\}$ is a partition of $[a,b]$, a representative set of P is a set $T = \{t_1, t_2,, t_n\}$ such that $t \in [x_{-1}, x_n]$ for all $i \in \{1,, n\}$.Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, let f: $[a,b]$ are presentative set of P. The Riemann sum of f with respect to P and T, denoted $S(f,P,T)$, is defined byRiemann Sum (Definition 5.2.2)Riemann Sum (Definition of Integrability $(\epsilon \cdot \delta)$ (Definition 5.2.4)Definition of Integrability $(\epsilon \cdot \delta)$ (Definition 5.2.4)	Axiom / Theorem / Lemma / Definition	Description
Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, let $f:$ $[a,b] \rightarrow \mathbb{R}$ be a function, let $P = \{x_0, x_1,, x_n\}$ be a partition of $[a,b]$ and let $T = \{t_1, t_2,, t_n\}$ be a representative set of P. The Riemannsum of f with respect to P and T, denoted $S(f,P,T)$, is defined by $S(f,P,T) = \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1})$. $f(\xi)$ <th>Definition 5.2.1</th> <th>1. A partition of [a,b] is a set P = {$x_0, x_1,, x_n$} such that a = $x_0 < x_1$ < < x_n = b, for some $n \in \mathbb{N}$. 2. If P = {$x_0, x_1,, x_n$} is a partition of [a,b], the norm (also called the mesh) of P, denoted P , is defined by P = max{$x_1 - x_0, x_2 - x_1,, x_n - x_{n-1}$}. 3. If P = {$x_0, x_1,, x_n$} is a partition of [a,b], a representative set of</th>	Definition 5.2.1	1. A partition of [a,b] is a set P = { $x_0, x_1,, x_n$ } such that a = $x_0 < x_1$ < < x_n = b, for some $n \in \mathbb{N}$. 2. If P = { $x_0, x_1,, x_n$ } is a partition of [a,b], the norm (also called the mesh) of P, denoted P , is defined by P = max{ $x_1 - x_0, x_2 - x_1,, x_n - x_{n-1}$ }. 3. If P = { $x_0, x_1,, x_n$ } is a partition of [a,b], a representative set of
(2) $r(x) = \{1 \text{ or } 0\}$ (2) $r(x) = \{1 \text{ or } 0\}$ Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, let f: $[a,b] \to \mathbb{R}$ be a function and let $K \in \mathbb{R}$. The number K is theRiemann integral of f, written $f(x) dx = K$,(Definition 5.2.4)if for each $\varepsilon > 0$, there is some $\delta > 0$ such that if P is a partition of		Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, let f: $[a,b] \rightarrow \mathbb{R}$ be a function, let P = {x ₀ , x ₁ ,, x _n } be a partition of [a,b] and let T = {t ₁ , t ₂ ,, t _n } be a representative set of P. The Riemann sum of f with respect to P and T, denoted S(f,P,T), is defined by $S(f,P,T) = \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1}).$
Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, let f: $[a,b] \rightarrow \mathbb{R}$ be a function and let $K \in \mathbb{R}$. The number K is theDefinition of Integrability $(\varepsilon - \delta)$ (Definition 5.2.4)If for each $\varepsilon > 0$, there is some $\delta > 0$ such that if P is a partition of	Example 5.2.3	
$\begin{array}{l} [a,b] \rightarrow \mathbb{R} \text{ be a function and let } K \in \mathbb{R}. \text{ The number } K \text{ is the} \\ \hline \mathbf{Riemann integral of } f, \text{ written} \\ \hline \mathbf{Gefinition 5.2.4} \end{array}$ $\begin{array}{l} [a,b] \rightarrow \mathbb{R} \text{ be a function and let } K \in \mathbb{R}. \text{ The number } K \text{ is the} \\ \hline \mathbf{Riemann integral of } f, \text{ written} \\ \hline \int_{a}^{b} f(x) dx = K, \\ \text{ if for each } \varepsilon > 0, \text{ there is some } \delta > 0 \text{ such that if } P \text{ is a partition of} \end{array}$		
$ S(f,P,T) - K < \varepsilon$. If the Riemann integral of f exists, we say that f is	(ε- δ)	[a,b] → ℝ be a function and let $K \in \mathbb{R}$. The number K is the Riemann integral of f, written $\int_{a}^{b} f(x) dx = K,$ if for each $\varepsilon > 0$, there is some $\delta > 0$ such that if P is a partition of [a,b] with $ P < \delta$, and if T is a representative set of P, then

	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, and
	let f: [a,b] $\rightarrow \mathbb{R}$ be a function.
Unique K (Lemma 5.2.5)	If f is Riemann integrable, then there is a unique $K \in \mathbb{R}$ such that
	$\int_a^b f(x)dx = K.$
Example 5.2.6	(1) $f(x) = c$
	(2) g(x) = {7 or 0}
	(3) r(x) = {0 or 1}
	(4) s(x) = {1/q or 0}
	(5) v(x) = {0 or 1}
Exercise 5.2.1	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, and
	let $\epsilon > 0$. Prove that there is a partition R of [a,b] such that $ R <$
	ε.

Lemma / Definition	Description
[ii 1 Integration: +, -, k (Theorem 5.3.1) 3	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, let f,g: $[a,b] \rightarrow \mathbb{R}$ be functions and let $k \in \mathbb{R}$. Suppose that f and g are integrable. 1. f + g is integrable and $\int_{a}^{b} [f + g](x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$ 2. f - g is integrable and $\int_{a}^{b} [f - g](x) dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx.$ 3. k f is integrable and $\int_{a}^{b} [kf](x) dx = k \int_{a}^{b} f(x) dx.$ 4. $\int_{a}^{b} k dx = k(b - a).$
t 1 Theorem 5.3.2 3 5	Let $[a,b] \subseteq \mathbb{R}$ be a closed bounded interval, and let f,g: $[a,b] \to \mathbb{R}$ be functions. Suppose that f and g are integrable. 1. If $f(x) \ge 0$ for all $x \in [a,b]$, then $\int_a^b f(x) dx \ge 0$. 2. If $f(x) \ge g(x)$ for all $x \in [a,b]$, then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$. 3. Let $m, M \in \mathbb{R}$. If $m \le f(x)$ for all $x \in [a,b]$, then $m(b-a) \le \int_a^b f(x) dx$, and if $f(x) \le M$ for all $x \in [a,b]$, then $\int_a^b f(x) dx \le M(b-a)$.
-	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, and et f: $[a,b] \rightarrow \mathbb{R}$ be a function. If f is integrable , then f is bounded .

Ch. 5.3 Elementary Properties of the Reimann Integral

Ch. 5.4 Upper Sums and Lower Sums

Axiom / Theorem / Lemma / Definition	Description
Refinement (Definition 5.4.1)	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, and let P and Q be partitions of $[a,b]$. The partition Q is a refinement of P if P \subseteq Q.
Example 5.4.2	The sets P = $\{0, \frac{1}{2}, 1\}$, and Q = $\{0, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}, 1\}$ and $\mathbb{R} = \{0, \frac{1}{3}, \frac{2}{3}, 1\}$ are partitions of $[0,1]$. Then Q is a refinement of P, but \mathbb{R} is not a refinement of P.
Norm of a Refinement (Lemma 5.4.3)	 Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and let P and Q be partitions of [a,b]. 1. P ∪ Q is a partition of [a,b], and P ∪ Q is a refinement of each of P and Q. 2. If Q is a refinement of P, then Q ≤ P .

Lemma 5.4.6	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, let f: $[a,b] \rightarrow \mathbb{R}$ be a function and let P be a partition of $[a,b]$. Suppose that f is bounded.
	1. If T is a representative set of P, then $L(f,P) \leq S(f,P,T) \leq U(f,P)$.
	2. If \mathbb{R} is a refinement of P, then L(f,P) \leq L(f, \mathbb{R}) \leq U(f, \mathbb{R}) \leq U(f,P).
	3. If Q is a partition of [a,b], then $L(f,P) \leq U(f,Q)$.
Integrable Equivalents (Theorem 5.4.7)	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, and
	let f: [a,b] $ ightarrow \mathbb{R}$ be a function. Suppose that f is bounded. The
	following are equivalent.
	a. The function f is integrable.
	b. For each $\varepsilon > 0$, there is some $\delta > 0$ such that if P is a partition of [a,b] with $ P < \delta$, then U(f,P) – L(f,P) < ε .
	c. For each $\epsilon > 0$, there is some partition P of [a,b] such
	that $U(f,P) - L(f,P) < \varepsilon$.
	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, and
	let f: [a,b] $\rightarrow \mathbb{R}$ be a function. Suppose that f is bounded.
	The upper integral of f, denoted $\overline{\int_a^b} f(x) dx$, is defined by
Upper/Lower Integral	
(Definition 5.4.8)	$\int_{a}^{b} f(x)dx = \text{glb}\{U(f, P) \mid P \text{ is a partition of } [a, b]\},$
	and the lower integral of f, denoted $\int_{a}^{b} f(x) dx$, is defined by
	$\int_{a}^{b} f(x)dx = \text{lub}\{L(f, P) \mid P \text{ is a partition of } [a, b]\}.$
	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, and
	let f: [a,b] $\rightarrow \mathbb{R}$ be a function. Suppose that f is bounded. Then the
Lemma 5.4.9	upper integral and lower integral of f always exist, and
	$\int_{a}^{b} f(x)dx \leq \overline{\int_{a}^{b}} f(x)dx.$
	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, and
	let f: [a,b] $ ightarrow \mathbb{R}$ be a function. Suppose that f is bounded. Then f is
	integrable if and only if
Proper Integral (Theorem 5.4.10)	$\int_{a}^{b} f(x)dx = \overline{\int_{a}^{b}} f(x)dx,$
	and if this equality holds then a^{a}
	$\int_{a}^{b} f(x) dx = \underline{\int_{a}^{b}} f(x) dx = \int_{a}^{b} f(x) dx.$
Continuous → Integrable (Theorem 5.4.11)	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, and
	let f: [a,b] $\rightarrow \mathbb{R}$ be a function. If f is continuous, then f is
	integrable.

Ch. 5.5 Further Properties of the Reimann Integral

Lemma / Definition $g \circ f$ is Integrable (Theorem 5.5.1)Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate clo $\subseteq \mathbb{R}$ be a set and let $f: [a,b] \to \mathbb{R}$ and g Suppose that f is integrable, and that f 1. If g is uniformly continuous and bound integrable. 2. If D is a non-degenerate closed bound continuous, then $g \circ f$ is integrable. Let f,g: $[0,1] \to \mathbb{R}$ be defined by $f(x) = 3$ $(1, if x = 0 x, if x \in (0,1]$. Then $(f/g)(x) = 3$ We know by Example 5.2.6 (1) that f is also integrable, as can be seen by complexence for the function f g is not integrable, becan bounded by Theorem 5.3.3, and yet f g	on
$g \circ f$ is Integrable (Theorem 5.5.1) $\subseteq \mathbb{R}$ be a set and let $f: [a,b] \rightarrow \mathbb{R}$ and g Suppose that f is integrable, and that f 1. If g is uniformly continuous and bou integrable. 2. If D is a non-degenerate closed boun continuous, then $g \circ f$ is integrable. Z If D is a non-degenerate closed bound continuous, then $g \circ f$ is integrable. Z If D is a non-degenerate closed bound continuous, then $g \circ f$ is integrable. Z If $f, g: [0,1] \rightarrow \mathbb{R}$ be defined by $f(x) = 3$ (1, if $x = 0 x$, if $x \in (0,1]$. Then $(f/g)(x) = 3$ We know by Example 5.2.6 (1) that f is also integrable, as can be seen by com Exercise 5.3.3 (3). However, even thou the function f g is not integrable, beca bounded by Theorem 5.3.3, and yet f g	and hoursday interval lat D
g \circ f is Integrable (Theorem 5.5.1)Suppose that f is integrable, and that f 1. If g is uniformly continuous and bound integrable. 2. If D is a non-degenerate closed bound continuous, then g \circ f is integrable. Let f,g: $[0,1] \rightarrow \mathbb{R}$ be defined by f(x) = 3 (1, if x = 0 x, if x \in (0,1]. Then (f/g)(x) = We know by Example 5.2.6 (1) that f is also integrable, as can be seen by commexercise 5.3.3 (3). However, even thou the function f g is not integrable, became bounded by Theorem 5.3.3, and yet f g	
g \circ f is integrable (Theorem 5.5.1)1. If g is uniformly continuous and bound integrable. 2. If D is a non-degenerate closed bound continuous, then g \circ f is integrable. Let f,g: $[0,1] \rightarrow \mathbb{R}$ be defined by f(x) = 3 (1, if x = 0 x, if x \in (0,1]. Then (f/g)(x) = We know by Example 5.2.6 (1) that f is also integrable, as can be seen by com Exercise 5.3.3 (3). However, even thou the function f g is not integrable, beca bounded by Theorem 5.3.3, and yet f g	
(Theorem 5.5.1)integrable.2. If D is a non-degenerate closed bound continuous, then $g \circ f$ is integrable.Let f,g: $[0,1] \rightarrow \mathbb{R}$ be defined by $f(x) = 3$ (1, if $x = 0 x$, if $x \in (0,1]$. Then $(f/g)(x) = 3$ We know by Example 5.2.6 (1) that f is also integrable, as can be seen by come Exercise 5.3.3 (3). However, even thou the function f g is not integrable, becan bounded by Theorem 5.3.3, and yet f g	
continuous, then $g \circ f$ is integrable.Let f,g: $[0,1] \rightarrow \mathbb{R}$ be defined by $f(x) = 3$ $(1, if x = 0 x, if x \in (0,1]$. Then $(f/g)(x) = 3$ We know by Example 5.2.6 (1) that f is also integrable, as can be seen by comExample 5.5.2Example 5.3.3 (3). However, even thouthe function f g is not integrable, becabounded by Theorem 5.3.3, and yet f g	
Let f,g: $[0,1] \rightarrow \mathbb{R}$ be defined by $f(x) = 3$ $(1, if x = 0 x, if x \in (0,1]$. Then $(f/g)(x) =$ Example 5.5.2We know by Example 5.2.6 (1) that f is also integrable, as can be seen by com Exercise 5.3.3 (3). However, even thou the function f g is not integrable, beca bounded by Theorem 5.3.3, and yet f g	nded interval and g is
Example 5.5.2 $(1, \text{ if } x = 0 \text{ x}, \text{ if } x \in (0,1]. \text{ Then } (f/g)(x) = 0$ We know by Example 5.2.6 (1) that f is also integrable, as can be seen by compared by the seen by compared by the function f g is not integrable, becarbounded by Theorem 5.3.3, and yet f g	
Example 5.5.2also integrable, as can be seen by com Exercise 5.3.3 (3). However, even thou the function f g is not integrable, beca bounded by Theorem 5.3.3, and yet f	
	bining Exercise 5.2.6 and agh g(x) \neq 0 for all x \in [0,1],
is evident by looking at the graph of f g 3.2.6.	-
Let $A \subseteq \mathbb{R}$ be a set, and let $f: A \rightarrow \mathbb{R}$ be	e a function. The function f is
Definition 5.5.3bounded away from zero if there is so	ome $P > 0$ such that $ f(x) \ge P$
for all $x \in A$.	
Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate clo let f,g: $[a,b] \rightarrow \mathbb{R}$ be functions. Suppose	
what is integrable $1 f^n$ is integrable for all $n \in \mathbb{N}$	e that i and g are integrable.
(Theorem 5.5.4) 2. fg is integrable.	
3. If g is bounded away from zero, the	n f/g is integrable.
Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate clo	sed bounded interval, and
let f: [a,b] $ ightarrow \mathbb{R}$ be a function. If f is int	egrable, then f is
Absolute Value of Integral integrable and	
(Theorem 5.5.5) $\left \int_{a}^{b} f(x) dx \right \leq \int_{a}^{b} f(x) dx$	f(x) dx
Let $D \subseteq C \subseteq \mathbb{R}$ be non-degenerate close	sed bounded intervals, and
Theorem 5.5.6let f: $C \rightarrow \mathbb{R}$ be a function. If f is integr	
Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate clo	sed bounded interval, let $c \in$
(a,b) and let f: [a,b] $ ightarrow \mathbb{R}$ be a function	l.
1. f is integrable if and only if f _[a,c] and	
Intermediate Bound 2. If f is integrable, then	
(Theorem 5.5.7) $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx$	$x + \int_{c}^{b} f(x) dx$

Swap Bounds / Same Bounds (Definition 5.5.8)	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, and
	let f: [a,b] $ ightarrow \mathbb{R}$ be a function. Suppose that f is integrable.
	Let $\int_{a}^{b} f(x) dx$ be defined by
	$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx,$
	and let $\int_{a}^{a} f(x) dx$ be defined by
	$\int_{a}^{a} f(x) dx = 0$
Split Bounds of Integration (Corollary 5.5.9)	Let $C \subseteq \mathbb{R}$ be a closed bounded interval, and let $f: C \to \mathbb{R}$ be a
	function. Let a,b, $c \in C$. If f is integrable, then
	$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$

Ch. 5.6 Fundamental Theorem of Calculus

Axiom / Theorem / Lemma / Definition	Description
Example 5.6.1	(1) Let f: $[0,2] \rightarrow \mathbb{R}$ be defined by $f(x) = x$ for all $x \in [0,2]$. Let F: $[0,2] \rightarrow \mathbb{R}$ be defined by $F(x) = \int_{1}^{x} f(t) dt$
	(2) Let h: $[0,2] \rightarrow \mathbb{R}$ be defined by h(x) = (1, if $x \in [0,1]$ 2, if $x \in (1,2]$.
	Let $I \subseteq \mathbb{R}$ be a non-degenerate interval, let $a \in I$ and let $f: I \to \mathbb{R}$ be a function. Suppose that $f _c$ is integrable for every non-degenerate closed bounded interval $C \subseteq I$. Let $F: I \to \mathbb{R}$ be defined by
Fundamental Theorem of Calculus Version I (Theorem 5.6.2)	$F(x) = \int_{a}^{x} f(t) dt$ for all $x \in I$. Let $c \in I$. If f is continuous at c, then F is differentiable at c and F'(c) = f(c). If f is continuous, then F is differentiable and F' = f.
Continuous → Antiderivative (Corollary 5.6.3)	Let $I \subseteq \mathbb{R}$ be a non-degenerate interval, and let $f: I \rightarrow \mathbb{R}$ be a function. If f is continuous, then f has an antiderivative.
	Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate closed bounded interval, and let f: $[a,b] \rightarrow \mathbb{R}$ be a function. Suppose that f is integrable and f has
Fundamental Theorem of Calculus Version II (Theorem 5.6.4)	an antiderivative. If F: [a,b] $\rightarrow \mathbb{R}$ is an antiderivative of f, then $\int_{a}^{b} f(x) dx = F(b) - F(a)$
Example 5.6.5	(1) Let f: $\mathbb{R} \to \mathbb{R}$ be defined by f(x) = (x ² sin 1/x ² , if x ≠ 0 0, if x = 0.
	(2) Let h: $[0,2] \rightarrow \mathbb{R}$ be defined by h(x) = (1, if $x \in [0,1]$, 2, if $x \in (1,2]$.
Example 5.6.6	(1) Let g: $[0,2] \rightarrow \mathbb{R}$ be defined by g(x) = x ² for all $x \in [0,2]$.
	(2) $\int_{-1}^{1} \frac{1}{x^2} dx$

Sources:

- <u>SNHU MAT 260</u> Cryptology, Invitation to Cryptology, 1st Edition, Thomas Barr, 2001.
- <u>SNHU MAT 470</u> Real Analysis, <u>The Real Numbers and Real Analysis</u>, Ethan D. Bloch, Springer New York, 2011.