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Number Sets 
 

Symbol Definition Examples Equations Solution 

∅ 
empty set, 

set with no members 
{ } 1 = 2 null 

ℕ natural numbers 
ℕ1 = {1, 2, 3, …} Pre-2010 NA 

ℕ0 = {0, 1, 2, 3, …} See ISO 80000-2 2-6.1 

ℙ prime numbers {2, 3, 5, 7, 11, 13, ...} unofficial NA 

ℤ integers {…, −2, −1, 0, 1, 2, …} 𝑥 + 7 = 0 𝑥 = −7 

ℚ rational numbers {0, ¼, ½, ¾, 1} 4𝑥 − 1 = 0 𝑥 = ¼ 

𝔸 algebraic numbers {5, -7, ½, √2} 2𝑥2 + 4𝑥 − 7 = 0 x is algebraic 

𝕋 
transcendental 

numbers 
{π, e, eπ, sin(x), logb a} 𝕋 = 𝕌 − 𝔸 NA 

ℝ real numbers {3.1415, -1, ⅞, √2, π} 𝑥2 − 2 = 0 𝑥 = ±√2 

𝕀 imaginary numbers {2i, √−1} 𝑥2 + 1 = 0 
𝑥 = ±√−1 

𝑥 = ±𝑖 

ℂ complex numbers {1 + 2i, -3.4i, ⅝} 𝑥2 − 4𝑥 + 5 = 0 𝑥 = 2 ± 𝑖 

𝕌 universal set {all possible values} ∞ NA 
 

 
 

Derived Number Sets 
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Symbol Definition Equations Examples 
Integers ℤ 

{0} zero n = 0 {0} 

ℤ* 
ℤ - {0} 
ℤ \ {0} 

non-zero integers n ≠ 0 {-3, -2, -1, 1, 2, 3, …} 

ℤ+ positive integers n > 0 {1, 2, 3, …} 

ℕ ⋃ {0} non-negative integers n ≥ 0 {0, 1, 2, 3, …} 

ℤ‒ negative integers n < 0 {…, -3, -2, -1} 

ℤ‒ ⋃ {0} non-positive integers n ≤ 0 {…, -3, -2, -1, 0} 

Real Numbers ℝ 

{0} zero x = 0 {0.0} 

ℝ - {0} 
ℝ \ {0} 

non-zero real numbers x ≠ 0 {-0.001, 0.001} 

ℝ+ 
(0, ∞) 

positive real numbers x > 0 {0.0001, 0.0002, ...} 

ℝ+ ⋃ {0} 
[0, ∞) 

non-negative real numbers x ≥ 0 {0, 0.0001, 0.0002, ...} 

ℝ‒ 

(-∞, 0) 
negative real numbers x < 0 {…, -0.0002, -0.0001} 

ℝ‒ ⋃ {0} 
(-∞, 0] 

non-positive real numbers x ≤ 0 {…, -0.0002, -0.0001, 0} 
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Definitions 
 

Term Definition 

Definition 
A precise and unambiguous description of the meaning of a mathematical term. It 
characterizes the meaning of a word by giving all the properties and only those 
properties that must be true. 

Theorem 
A mathematical statement that is proved using rigorous mathematical reasoning. 
In a mathematical paper, the term theorem is often reserved for the most 
important results. 

Lemma 

A minor result whose sole purpose is to help in proving a theorem. It is a 
steppingstone on the path to proving a theorem. Very occasionally lemmas can 
take on a life of their own (Zorn’s lemma, Urysohn’s lemma, Burnside’s 
lemma, Sperner’s lemma). 

Corollary 
A result in which the (usually short) proof relies heavily on a given theorem (we 
often say that “this is a corollary of Theorem A”). 

Proposition A proved and often interesting result, but generally less important than a theorem. 

Conjecture 
A statement that is unproved, but is believed to be true (Collatz 
conjecture, Goldbach conjecture, twin prime conjecture). 

Claim An assertion that is then proved. It is often used like an informal lemma. 

Axiom / 
Postulate 

A statement that is assumed to be true without proof. These are the basic building 
blocks from which all theorems are proved (Euclid’s five postulates, Zermelo-
Fraenkel axioms, Peano axioms). 

Identity 
A mathematical expression giving the equality of two (often variable) quantities 
(trigonometric identities, Euler’s identity). 

Paradox 

A statement that can be shown, using a given set of axioms and definitions, to be 
both true and false. Paradoxes are often used to show the inconsistencies in a 
flawed theory (Russell’s paradox). The term paradox is often used informally to 
describe a surprising or counterintuitive result that follows from a given set of 
rules (Banach-Tarski paradox, Alabama paradox, Gabriel’s horn). 

 
Corollary 

↑ 
Theorem / 
Proposition 

↑ 
Lemma 

↑ 
Axiom / Postulate 

↑ 
Conjecture / Claim 

↑ 
Definition  

 
Textbook Bloch, Ethan D.. The Real Numbers and Real Analysis. Springer New York, 2011. 

 

http://en.wikipedia.org/wiki/Zorn%27s_lemma
http://en.wikipedia.org/wiki/Urysohn%27s_lemma
http://en.wikipedia.org/wiki/Burnside's_lemma
http://en.wikipedia.org/wiki/Burnside's_lemma
http://en.wikipedia.org/wiki/Sperner%27s_lemma
http://en.wikipedia.org/wiki/Collatz_conjecture
http://en.wikipedia.org/wiki/Collatz_conjecture
http://en.wikipedia.org/wiki/Goldbach's_conjecture
http://en.wikipedia.org/wiki/Twin_prime_conjecture
http://en.wikipedia.org/wiki/Euclidean_geometry
http://en.wikipedia.org/wiki/Zermelo-Frankel_axioms
http://en.wikipedia.org/wiki/Zermelo-Frankel_axioms
http://en.wikipedia.org/wiki/Peano_axioms
http://en.wikipedia.org/wiki/List_of_trigonometric_identities
http://en.wikipedia.org/wiki/Euler%27s_identity
http://en.wikipedia.org/wiki/Banach%E2%80%93Tarski_paradox
http://en.wikipedia.org/wiki/Alabama_paradox#Alabama_Paradox
http://en.wikipedia.org/wiki/Gabriel%27s_Horn
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Ch. 1.2: Natural Numbers ℕ 
 

Axiom / Theorem / 
Lemma / Definition 

Description 

Operations: Binary, Unary 
(Definition 1.1.1) 

Let S be a set.  
A binary operation on S is a function S × S → S.  
A unary operation on S is a function S → S. 

Peano Postulates 
(Axiom 1.2.1) 

There exists a set ℕ with an element 1 ∈ ℕ and a function s: ℕ → 
ℕ that satisfy the following three properties. 

a. There is no n ∈ ℕ such that s(n) = 1.  
b. The function s is injective.  
c. Let G ⊆ ℕ be a set. Suppose that 1 ∈ G, and that if g ∈ G 
then s(g) ∈ G. Then G = ℕ. 

Natural Number 
(Definition 1.2.2) 

The set of natural numbers, denoted ℕ, is the set the existence of 
which is given in the Peano Postulates. 

Lemma 1.2.3 
Let a ∈ ℕ. Suppose that a ≠ 1.  
Then there is a unique b ∈ ℕ such that a = s(b). 

Definition by Recursion 
(Theorem 1.2.4) 

Let H be a set, let e ∈ H and let k: H → H be a function. Then there 
is a unique function f: ℕ → H such that f(1) = e, and that f ◦ s = k ◦ f. 

Operation: + 
(Theorem 1.2.5) 

There is a unique binary operation +: ℕ × ℕ → ℕ that satisfies the 
following two properties for all n,m ∈ ℕ. 

a. n + 1 = s(n).                                   (successor). 
b. n + s(m) = s(n + m).  [= n + (m+1)] 

Operation: * 
(Theorem 1.2.6) 

There is a unique binary operation *: ℕ × ℕ → ℕ that satisfies the 
following two properties for all n,m ∈ ℕ. 

a. n * 1 = n. 
b. n * s(m) = n(m+1) = (n * m) + n. 

Addition Laws 
(Theorem 1.2.7a) 

Let a, b, c ∈ ℕ.  

1. If a + c = b + c, then a = b       (Cancellation Law for Addition).  

2. (a + b) + c = a + (b + c)               (Associative Law for Addition).  

3. 1 + a = s(a) = a + 1.  

4. a + b = b + a                             (Commutative Law for Addition).  

5. a + b ≠ 1.  

6. a + b ≠ a.  

Multiplication Laws 
(Theorem 1.2.7b) 

Let a, b, c ∈ ℕ.  

7. a * 1 = a = 1 * a                          (Identity Law for Multiplication).  

8. (a + b)c = ac + bc                                                  (Distributive Law).  

9. ab = ba                               (Commutative Law for Multiplication).  

10. c(a + b) = ca + cb                                                (Distributive Law).  

11. (ab)c = a(bc)                        (Associative Law for Multiplication).  

12. If ac = bc then a = b         (Cancellation Law for Multiplication).  

13. ab = 1 if and only if a = 1 = b. 

Relation: < 
(Definition 1.2.8a) 

The relation < on ℕ is defined by a < b if and only if there is some p 
∈ N such that a + p = b, for all a,b ∈ N. 

Relation: ≤ 
(Definition 1.2.8b) 

The relation ≤ on ℕ is defined by a ≤ b if and only if a < b or a = b, 
for all a,b ∈ ℕ. 
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Relation: < and ≤ 
(Theorem 1.2.9) 

Let a, b, c, d ∈ ℕ.  

1. a ≤ a, and a ≮ a, and a < a + 1.  

2. 1 ≤ a.  

3. If a < b and b < c, then a < c; if a ≤ b and b < c, then a < c; if a < b 
and b ≤ c, then a < c; if a ≤ b and b ≤ c, then a ≤ c.  

4. a < b if and only if a + c < b + c.  

5. a < b if and only if ac < bc.  

6. Precisely one of a < b or a = b or a > b holds  (Trichotomy Law).  

7. a ≤ b or b ≤ a.  

8. If a ≤ b and b ≤ a, then a = b.  

9. It cannot be that b < a < b + 1.  

10. a ≤ b if and only if a < b + 1.  

11. a < b if and only if a + 1 ≤ b. 

Well-Ordering Principle 
(Theorem 1.2.10) 

Let G ⊆ ℕ be a non-empty set. Then there is some m ∈ G such that 
m ≤ g for all g ∈ G.  
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Ch. 1.3 – 1.4: Integers ℤ 
 

Axiom, Theorem, etc. Description 
Relation: ~ 
(Definition 1.3.1) 

The relation ∼ on ℕ × ℕ is defined by (a,b) ∼ (c,d) if and only if a + 
d = b + c, for all (a,b),(c,d) ∈ ℕ × ℕ. 

Relation: ~ 
(Lemma 1.3.2) 

The relation ∼ is an equivalence relation on ℕ × ℕ. 

Integers: ℤ 
(Definition 1.3.3) 

The set of integers, denoted ℤ, is the set of equivalence classes of 
ℕ × ℕ with respect to the equivalence relation ∼. 

Well-Defined: +, * 
(Lemma 1.3.4) 

The binary operations + and *, the unary operation −, and the 
relation <, all on ℤ, are well-defined. 

Addition & Multiplication 
Laws 
(Definition 1.4.1 & 1.3.5) 

An ordered integral domain is a set R with elements 0,1 ∈ R, 
binary operations + and ·, a unary operation − and a relation <, 
which satisfy the following properties. 
Let x, y, z ∈ R.  
a. (x + y) + z = x + (y + z)        (Associative Law for Addition). 
b. x + y = y + x                         (Commutative Law for Addition). 
c. x + 0 = x                                (Identity Law for Addition). 
d. x + (−x) = 0                          (Inverses Law for Addition). 
e. (xy)z = x(yz)                         (Associative Law for Multiplication). 
f. xy = yx                                  (Commutative Law for Multiplication). 
g. x · 1 = x                                (Identity Law for Multiplication). 
h. x(y + z) = xy + xz                 (Distributive Law). 
i. If xy = 0, then x = 0 or y = 0   (No Zero Divisors Law). 
j. Precisely one of x < y or x = y or x > y holds    (Trichotomy Law). 
k. If x < y and y < z, then x < z        (Transitive Law). 
l. If x < y then x + z < y + z               (Addition Law for Order). 
m. If x < y and z > 0, then xz < yz   (Multiplication Law for Order). 
n. 0 ≠ 1                                    (Non-Triviality). 

Relation: ≤ 
(Definition 1.4.2) 

Let R be an ordered integral domain, and let A ⊆ R be a set.  
1. The relation ≤ on R is defined by a ≤ b if and only if a < b or a = b, 
for all a,b ∈ R.  
2. The set A has a least element if there is some a ∈ A such that a ≤ 
x for all x ∈ A. 

Well-Ordering Principle 
(Definition 1.4.3) 

Let R be an ordered integral domain. The ordered integral domain 
R satisfies the Well-Ordering Principle if every non-empty subset 
of {x ∈ R | x > 0} has a least element. 

Axiom for the Integers 
(Axiom 1.4.4) 

There exists an ordered integral domain ℤ that satisfies the Well-
Ordering Principle. 
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Properties of Integers 
(Lemma 1.4.5 & 1.3.8) 

Let x, y, z ∈ ℤ.  
1. If x + z = y + z, then x = y           (Cancellation Law for Addition). 
2. −(−x) = x.  
3. −(x + y) = (−x) + (−y).  
4. x · 0 = 0.  
5. If z ≠ 0 and if xz = yz, then x = y     (Cancellation Law for Mult.). 
6. (−x)y = −xy = x(−y).  
7. xy = 1 if and only if x = 1 = y or x = −1 = y.  
8. x > 0 if and only if −x < 0, and x < 0 if and only if −x > 0.  
9. 0 < 1.  
10. If x ≤ y and y ≤ x, then x = y.  
11. If x > 0 and y > 0, then xy > 0. If x > 0 and y < 0, then xy < 0.  

Discreteness 
(Theorem 1.4.6 & 1.3.9) 

Let x ∈ ℤ. Then there is no y ∈ ℤ such that x < y < x + 1. 

Positive/Negative: +, - 
(Definition 1.4.7 & 1.3.6) 

1. Let x ∈ ℤ. The number x is positive if x > 0, and the number x is 
negative if x < 0.  

ℕ ⊆ ℤ: 
(Theorem 1.3.7 & 
Definition 1.4.7) 

Let i: ℕ →ℤ be defined by i(n) = [(n+1,1)] for all n ∈ ℕ. 

1. The function i: ℕ → ℤ is injective.  

2. i(ℕ) = {x ∈ ℤ | x > 0ˆ}.  

3. i(1) = 1ˆ.  

4. Let a,b ∈ ℕ. Then 
a. i(a+b) = i(a) + i(b);  
b. i(ab) = i(a) i(b);  
c. a < b if and only if i(a) < i(b). 

Natural Numbers: ℕ 
(Definition 1.4.7) 

2. The set of natural numbers, denoted ℕ, is defined by ℕ = {x ∈ ℤ 
| x > 0}. 

Peano Postulates 
(Theorem 1.4.8 & Axiom 
1.2.1) 

Let s: ℕ → ℕ be defined by s(n) = n + 1 for all n ∈ ℕ.  

a. There is no n ∈ ℕ such that s(n) = 1.  

b. The function s is injective.  

c. Let G ⊆ ℕ be a set. Suppose that 1 ∈ G, and that if g ∈ G 
then s(g) ∈ G. Then G = ℕ. 
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Ch. 1.5: Rational Numbers ℚ 
 

Definition / 
Lemma / 
Theorem 

Description 

Relation: ≍, ℤ∗ 
(Definition 1.5.1) 

Let ℤ∗ = ℤ− {0}. The relation ≍ on ℤ × ℤ∗ is defined by (x, y) ≍ (z,w) if 
and only if xw = yz, for all (x, y),(z,w) ∈ ℤ × ℤ∗. 

Relation: ≍ 
(Lemma 1.5.2) 

The relation ≍ is an equivalence relation. 

Rational Numbers: ℚ 
(Definition 1.5.3) 

The set of rational numbers, denoted ℚ, is the set of equivalence classes 
of ℤ × ℤ∗ with respect to the equivalence relation ≍. 
 
The elements 0¯,1¯ ∈ ℚ are defined by 0¯ = [(0,1)] and 1¯ = [(1,1)]. Let 
ℚ∗ = ℚ − {0¯}. The binary operations + and · on ℚ are defined by 

 [(x,y)] + [(z,w)] = [(xw + yz,yw)]  
[(x,y)] · [(z,w)] = [(xz, yw)]  

 
for all [(x, y)],[(z,w)] ∈ ℚ. 
 

• −: The unary operation − on ℚ is defined by −[(x, y)] = [(−x, y)] for all 
[(x,y)] ∈ ℚ.  

• −1: The unary operation −1 on ℚ∗ is defined by [(x, y)]−1 = [(y, x)] for all 
[(x, y)] ∈ ℚ∗.  

• <: The relation < on ℚ is defined by [(x,y)] < [(z,w)] if and only if 
either xw < yz when y > 0 and w > 0 or when y < 0 and w < 0, 

• >: The relation > on ℚ is defined by [(x,y)] > [(z,w)] if and only if 
either xw > yz when y > 0 and w < 0 or when y < 0 and w > 0, for all 

[(x, y)],[(z,w)] ∈ ℚ.  

• ≤: The relation ≤ on ℚ is defined by [(x, y)] ≤ [(z,w)] if and only if 

[(x,y)] < [(z,w)] or [(x,y)] = [(z,w)], for all [(x,y)],[(z,w)] ∈ ℚ. 

Well-Defined: ℚ 
(Lemma 1.5.4) 

The binary operations + and ·, the unary operations − and −1, and the 
relation <, all on ℚ, are well-defined. 
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Addition and 
Multiplication Laws 
(Theorem 1.5.5) 

Let r,s,t ∈ ℚ.  
Field: 
1. (r + s) + t = r + (s + t)                    (Associative Law for Addition).  
2. r + s = s + r                                     (Commutative Law for Addition).  
3. r + 0¯ = r                                         (Identity Law for Addition).  
4. r + (−r) = 0¯                                    (Inverses Law for Addition).  
5. (rs)t = r(st)                                     (Associative Law for Multiplication).  
6. rs = sr                                             (Commutative Law for Multiplication).  
7. r· 1¯ = r                                          (Identity Law for Multiplication).  
8. If r ≠ 0¯, then r · r−1 = 1¯              (Inverses Law for Multiplication).  
9. r(s + t) = rs + rt                             (Distributive Law).  
Ordered Field: 
11. If r < s and s < t, then r < t        (Transitive Law).  
12. If r < s then r + t < s + t              (Addition Law for Order).  
13. If r < s and t > 0¯, then rt < st   (Multiplication Law for Order).  
14. 0¯ ≠ 1¯                                          (Non-Triviality). 

ℤ ⊆ ℚ: 
(Theorem 1.5.6) 

Let i: ℤ → ℚ be defined by i(x) = [(x,1)] for all x ∈ ℤ.  

1. The function i: ℤ → ℚ is injective.  

2. i(0) = 0¯ and i(1) = 1¯.  

3. Let x, y ∈ ℤ. Then  

a. i(x + y) = i(x) + i(y);  

b. i(−x) = −i(x);  

c. i(xy) = i(x) i(y);  

d. x < y if and only if i(x) < i(y).  

4. For each r ∈ ℚ there are x,y ∈ ℤ such that y ≠ 0 and r = i(x) (i(y))−1. 

Operations: -, ÷, s−1, 
𝑟

𝑠
 

(Definition 1.5.7) 

The binary operation − on ℚ is defined by r − s = r + (−s) for all r,s ∈ ℚ.  

The binary operation ÷ on ℚ∗ is defined by r ÷ s = rs−1 for all r,s ∈ ℚ∗;  

we also let 0 ÷ s = 0 · s−1 = 0 for all s ∈ ℚ∗.  

The number r ÷ s is also denoted 
𝑟

𝑠
. 

Rational Numbers: ℚ 
(Lemma 1.5.8) 
(Definition 1.5.3 
Restated) 

Let a,c ∈ ℤ and b,d ∈ ℤ∗.  

1. 
𝑎

𝑏
 = 
𝑐

𝑑
 if and only if ad = bc.  

2. 
𝑎

𝑏
 + 
𝑐

𝑑
 = 
𝑎𝑑+𝑏𝑐

𝑏𝑑
.  

3. − 
𝑎

𝑏
 = 
−𝑎

𝑏
 . 

4. 
𝑎

𝑏
 · 
𝑐

𝑑
 = 
𝑎𝑐

𝑏𝑑
.  

5. If a ≠ 0, then (
𝑎

𝑏
)
−1

= 
𝑏

𝑎
 .  

6. If b > 0 and d > 0, or if b < 0 and d < 0, then 
𝑎

𝑏
 < 
𝑐

𝑑
 if and only if ad < bc; 

if b > 0 and d < 0, or if b < 0 and d > 0, then 
𝑎

𝑏
 > 

𝑐

𝑑
 if and only if ad > bc. 
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Ch. 1.6: Dedekind Cuts Dr 
 

Definition / Lemma Description 

Dedekind cut 
(Definition 1.6.1) 
AKA “upper cut” 

Let A ⊆ ℚ be a set. The set A is a Dedekind cut if the following 
three properties hold.  

a. A ≠ 0 and A ≠ ℚ.  

b. Let x ∈ A. If y ∈ ℚ and y ≥ x, then y ∈ A.  

c. Let x ∈ A. Then there is some y ∈ A such that y < x. 

Interpreting Dedekind cuts 

A Dedekind cut is a set, A, of rational numbers, with the 
properties shown above. 
  
a. Property (a) says A must be nonempty and cannot be all of 
ℚ.  
 
b. Property (b) says if a number, x, is in A, then all rational 
numbers greater than x are also in A.  
 
c. Property (c) is where things get interesting. It says that if x 
is in A, then there is at least one element of A that is smaller 
than x. (Actually, there are infinitely many.) This property is 
what is going to allow us to fill in the gaps in the rational 
numbers. 

Dedekind cut Existence 
(Lemma 1.6.2) 

Let r ∈ ℚ. Then the set {x ∈ ℚ | x > r} is a Dedekind cut. 

Dedekind cut not in form of 
Lemma 1.6.2 
(Example 1.6.3) 

Let 

T = {x ∈ ℚ | x > 0 and x2 > 2}.        (1.6.1) 

It is seen by Exercise 1.6.2 (1) that T is a Dedekind cut, and by Part 

(2) of that exercise it is seen that if T has the form {x ∈ ℚ | x > r} 

for some r ∈ ℚ, then r2 = 2. By Theorem 2.6.11 we know that 
there is no rational number x such that x2 = 2, and it follows that T 
is a Dedekind cut that is not of the form given in Lemma 1.6.2. 

Rational cut Dr 

(Definition 1.6.4) 

Let r ∈ ℚ.  

The rational cut at r, denoted Dr, is the Dedekind cut Dr = {x ∈ ℚ 

| x > r}.  

An irrational cut is a Dedekind cut that is not a rational cut at any 
rational number. 

Complement of Dedekind 
cut 
(Lemma 1.6.5) 

Let A ⊆ ℚ be a Dedekind cut.  

1. ℚ − A = {x ∈ ℚ | x < a for all a ∈ A}.          or { x ∈ ℚ | x ≤ r }. 

2. Let x ∈ ℚ − A. If y ∈ ℚ and y ≤ x, then y ∈ ℚ − A. 

Trichotomy Law 
(Lemma 1.6.6) 

Let A,B ⊆ ℚ be Dedekind cuts. Then precisely one of A ⫋ B or A = B 
or B ⫋ A holds. 

NOTE: A ⫋ B means that both A ⊂ B and A ≠ B. 
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Union of Family of Sets 
(Lemma 1.6.7) 

Let A be a non-empty family of subsets of ℚ. Suppose that X is a 
Dedekind cut for all X ∈ A. If ⋃X ∈ A X ≠ ℚ, then ⋃X ∈ A X is a 
Dedekind cut. 
 
For example, think about what happens if the set A is defined this 
way: 
        A = {x ∈ ℚ | x > 4}, 

{x ∈ ℚ | x > 3.2}, 
{x ∈ ℚ | x > 3.15}, 
{x ∈ ℚ | x > 3.142}, 

{x ∈ ℚ | x > 3.1416}, 

{x ∈ ℚ | x > 3.14160}, 
{x ∈ ℚ | x > 3.141593}, …} 

 
If you were to union all of the elements of A, you would end up 
with {x ∈ ℚ | x > π}. This is how the “gaps” get filled in. 

Dedekind cut Examples 
(Lemma 1.6.8) 

Let A,B ⊆ ℚ be Dedekind cuts.  
1. The set {r ∈ ℚ | r = a + b for some a ∈ A and b ∈ B} is a Dedekind 
cut.  
2. The set {r ∈ ℚ | −r < c for some c ∈ ℚ − A} is a Dedekind cut.  
3. Suppose that 0 ∈ ℚ − A and 0 ∈ ℚ − B. The set {r ∈ ℚ | r = ab for 
some a ∈ A and b ∈ B} is a Dedekind cut.  
4. Suppose that there is some q ∈ ℚ − A such that q > 0. The set {r 

∈ ℚ | r > 0 and 
1

𝑟
 < c for some c ∈ ℚ − A} is a Dedekind cut. 

 

Well-Ordering Principle 
(Lemma 1.6.9) 

Let A ⊆ ℚ be a Dedekind cut. Let y ∈ ℚ.  
1. Suppose that y > 0. Then there are u ∈ A and v ∈ ℚ − A such that 
y = u − v, and v < e for some e ∈ ℚ − A.  
2. Suppose that y > 1, and that there is some q ∈ ℚ − A such that q 
> 0. Then there are r ∈ A and s ∈ ℚ − A such that s > 0, and y > 

𝑟

𝑠
 , 

and s < g for some g ∈ ℚ − A. 
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Ch. 1.7: Real Numbers ℝ (Ch. 1) 
 

Axiom / Theorem / 
Lemma / Definition 

Description 

Real Numbers: ℝ 
Definition 1.7.1 

The set of real numbers, denoted ℝ, is defined by 
    ℝ = {A ⊆ ℚ | A is a Dedekind cut}. 

Relations: <, ≤ 
(Definition 1.7.2) 

The relation < on ℝ is defined by  
    A < B if and only if A ⫌ B, for all A,B ∈ ℝ.  
The relation ≤ on ℝ is defined by 
    A ≤ B if and only if A ⊇ B, for all A,B ∈ ℝ. 

Operation: +, − 
(Definition 1.7.3) 

The binary operation + on ℝ is defined by 
    A + B = {r ∈ ℚ | r = a + b for some a ∈ A and b ∈ B} 
for all A,B ∈ ℝ.  
The unary operation − on ℝ is defined by 
    −A = {r ∈ ℚ | −r < c for some c ∈ ℚ − A} 
for all A ∈ ℝ. 

Multiply Operator Setup 
Lemma 1.7.4 

Let A ∈ ℝ, and let r ∈ ℚ.  

1. A > Dr if and only if there is some q ∈ ℚ − A such that q > r.  

2. A ≥ Dr if and only if r ∈ ℚ − A if and only if a > r for all a ∈ A.  

3. If A < D0 then −A ≥ D0. 

Operations: •, -1 
(Definition 1.7.5) 

The binary operation • on ℝ is defined by 

A • B = 

{
 
 

 
 
 {r ∈  ℚ | r = ab for some a ∈ A and b ∈ B},

                 if A ≥ 𝐷0 and B ≥ 𝐷0
 −[(−A) • B],     if A < 𝐷0 and B ≥ 𝐷0
 −[A • (−B)],     if A ≥ 𝐷0 and B < 𝐷0
 (−A) • (−B),     if A < 𝐷0 and B < 𝐷0.

  

 

The unary operation −1 on ℝ − { D0 } is defined by 

A-1 = {

 {r ∈ ℚ | r > 0 and 
1

𝑟
< c for some c ∈ ℚ − A},

              if A > 𝐷0 

−(−A)−1,     if A < 𝐷0.
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Addition and 
Multiplication Laws 
(Theorem 1.7.6) 

Let A,B,C ∈ ℝ.  

Field: 
1. (A + B) + C = A + (B + C)         (Associative Law for Addition). 

2. A + B = B + A                            (Commutative Law for Addition).  

3. A + D0 = A                                (Identity Law for Addition).  

4. A + (−A) = D0 = 0                     (Inverses Law for Addition). 

5. (AB)C = A(BC)                          (Associative Law for Multiplication). 

6. AB = BA                                    (Commutative Law for Multiplication). 

7. A • D1 = A                                (Identity Law for Multiplication). 

8. If A ≠ D0, then AA−1 = D1 =1  (Inverses Law for Multiplication). 

9. A(B + C) = AB + AC                  (Distributive Law). 

Ordered Field: 
10. Precisely one of A < B or A = B or A > B holds   (Trichotomy Law). 

11. If A < B and B < C, then A < C             (Transitive Law). 

12. If A < B then A + C < B + C   (Addition Law for Order). 

13. If A < B and C > D0, then AC < BC      (Multiplication Law for Order). 

14. D0 < D1 or 0 < 1                     (Non-Triviality). 

Least Upper Bound 
Property Setup 
(Definition 1.7.7) 

Let A ⊆ ℝ be a set.  
1. The set A is bounded above if there is some M ∈ ℝ such that X ≤ M 
for all X ∈ A. The number M is called an upper bound of A.  
2. The set A is bounded below if there is some P ∈ ℝ such that X ≥ P 
for all X ∈ A. The number P is called a lower bound of A.  
3. The set A is bounded if it is bounded above and bounded below.  

4. Let M ∈ ℝ. The number M is a least upper bound (also called a 

supremum) of A if M is an upper bound of A, and if M ≤ T for all 
upper bounds T of A.  
5. Let P ∈ ℝ. The number P is a greatest lower bound (also called an 

infimum) of A if P is a lower bound of A, and if P ≥ V for all lower 
bounds V of A. 

Greatest Lower Bound 
Property (glb) 
(Theorem 1.7.8) 

Let A ⊆ ℝ be a set. If A is non-empty and bounded below, then A has 
a greatest lower bound.  (used in Dedekind cut proofs) 

Least Upper Bound 
Property (lub) 
(Theorem 1.7.9) 

Let A ⊆ ℝ be a set. If A is nonempty and bounded above, then A has a 
least upper bound. 

ℚ ⊆ ℝ: 
(Theorem 1.7.10) 

Let i: ℚ → ℝ be defined by i(r) = Dr for all r ∈ ℝ. 

1. The function i: ℚ → ℝ is injective.  

2. i(0) = D0 and i(1) = D1.  

3. Let r,s ∈ ℚ. Then  

a. i(r +s) = i(r) +i(s);  

b. i(−r) = −i(r);  

c. i(rs) = i(r) i(s);  

d. if r ≠ 0 then i(r−1) = [i(r)]−1;  

e. r < s if and only if i(r) < i(s).  
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Ch. 2.2: Real Numbers ℝ 
 

Definitions / 
Axiom 

Description 

Addition and 
Multiplication Laws 
(Definition 2.2.1) 

An ordered field is a set F with elements 0,1 ∈ F, binary operations + and 
·, a unary operation −, a relation <, and a unary operation −1 on F − {0}, 
which satisfy the following properties.  
 
Let x,y,z ∈ F.  
a. (x + y) + z = x + (y + z)                   (Associative Law for Addition). 
b. x + y = y + x                                    (Commutative Law for Addition). 
c. x + 0 = x                                           (Identity Law for Addition). 
d. x + (−x) = 0                                     (Inverses Law for Addition). 
e. (xy)z = x(yz)                                    (Associative Law for Multiplication). 
f. xy = yx                                              (Commutative Law for Multiplication). 
g. x · 1 = x                                            (Identity Law for Multiplication). 
h. If x ≠ 0, then xx−1 = 1                     (Inverses Law for Multiplication). 
i. x(y + z) = xy + xz                              (Distributive Law). 
j. Precisely one of x < y or x = y or x > y holds          (Trichotomy Law). 
k. If x < y and y < z, then x < z          (Transitive Law). 
l. If x < y then x + z < y + z                 (Addition Law for Order). 
m. If x < y and z > 0, then xz < yz     (Multiplication Law for Order). 
n. 0 ≠ 1                                                 (Non-Triviality). 

Bounds 
(Definition 2.2.2) 

Let F be an ordered field and let A ⊆ F be a set.  
1. The set A is bounded above if there is some M ∈ F such that x ≤ M for 
all x ∈ A. The number M is called an upper bound of A.  
2. The set A is bounded below if there is some P ∈ F such that x ≥ P for all 

x ∈ A. The number P is called a lower bound of A.  
3. The set A is bounded if it is bounded above and bounded below.  

4. Let M ∈ F. The number M is a least upper bound (also called a 
supremum) of A if M is an upper bound of A, and if M ≤ T for all upper 
bounds T of A.  

5. Let P ∈ F. The number P is a greatest lower bound (also called an 
infimum) of A if P is a lower bound of A, and if P ≥ V for all lower bounds 
V of A. 

Least Upper Bound 
Property 
(Definition 2.2.3) 

Let F be an ordered field. The ordered field F satisfies the Least Upper 
Bound Property if every non-empty subset of F that is bounded above 
has a least upper bound. 

Axiom for the Real 
Numbers 
(Axiom 2.2.4) 

There exists an ordered field ℝ that satisfies the Least Upper Bound 
Property.  
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Ch. 2.3: Algebraic Properties of Real Numbers ℝ 
 

Definitions / 
Axiom 

Description 

Operators: −, ÷, 2, ≤, 

2 
(Definition 2.3.1) 

1a. The binary operation − on ℝ is defined by a − b = a + (−b) for all a,b ∈ 
ℝ.  
1b. The binary operation ÷ on ℝ − {0} is defined by a ÷ b = ab−1 for all a,b 
∈ ℝ − {0}; we also let 0 ÷ s = 0 ·s−1 = 0 for all s ∈ ℝ − {0}. The number a ÷ b 

is also denoted 
𝑎

𝑏
 or a/b.  

2. Let a ∈ ℝ. The square of a, denoted a2, is defined by a2 = a · a.  

3. The relation ≤ on ℝ is defined by x ≤ y if and only if x < y or x = y, for all 

x,y ∈ ℝ.  

4. The number 2 ∈ ℝ is defined by 2 = 1 + 1. 

Properties of Real 
Numbers 
(Lemma 2.3.2) 

Let a,b,c ∈ ℝ.  

1. If a + c = b + c then a = b                        (Cancellation Law for Addition). 

2. If a + b = a then b = 0.  

3. If a + b = 0 then b = −a.  

4. −(a + b) = (−a) + (−b).  

5. −0 = 0.  

6. If ac = bc and c ≠ 0, then a = b     (Cancellation Law for Multiplication). 

7. 0 · a = 0 = a · 0.  

8. If ab = a and a ≠ 0, then b = 1.  

9. If ab = 1 then b = a−1.  

10. If a ≠ 0 and b ≠ 0, then (ab)−1 = a−1 b−1.  

11. (−1)· a = −a.  

12. (−a)b = −ab = a(−b).  

13. −(−a) = a.  

14. (−1)2 = 1 and 1−1 = 1.  

15. If ab = 0, then a = 0 or b = 0                              (No Zero Divisors Law). 

16. If a ≠ 0 then (a−1)−1 = a.  

17. If a ≠ 0 then (−a)−1 = −a−1.  
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Relations: <, ≤ 
(Lemma 2.3.3) 

Let a,b,c,d ∈ ℝ.  

1. If a ≤ b and b ≤ a, then a = b.  

2. If a ≤ b and b ≤ c, then a ≤ c. 

   If a ≤ b and b < c, then a < c.  

   If a < b and b ≤ c, then a < c.  

3. If a ≤ b then a + c ≤ b + c.  

4. If a < b and c < d, then a + c < b + d;  

   if a ≤ b and c ≤ d, then a + c ≤ b + d.  

5. a > 0 if and only if −a < 0, and a < 0 if and only if −a > 0; also 

   a ≥ 0 if and only if −a ≤ 0, and a ≤ 0 if and only if −a ≥ 0.  

6. a < b if and only if b − a > 0 if and only if −b < −a; also  

   a ≤ b if and only if b−a ≥ 0 if and only if −b ≤ −a.  

7. If a ≠ 0 then a2 > 0. 

8. −1 < 0 < 1.  

9. a < a + 1.  

10. If a ≤ b and c > 0, then ac ≤ bc.  

11. If 0 ≤ a < b and 0 ≤ c < d, then ac < bd;  

    if 0 ≤ a ≤ b and 0 ≤ c ≤ d, then ac ≤ bd.  

12. If a < b and c < 0, then ac > bc.  

13. If a > 0 then a−1 > 0.  

14. If a > 0 and b > 0, then a < b if and only if b−1 < a−1 if and only if a2 < b2. 

Positive / Negative 
(Definition 2.3.4) 

Let a ∈ ℝ.  

The number a is positive if a > 0;  

the number a is negative if a < 0; and  

the number a is non-negative if a ≥ 0.  

Positive / Negative 
(Lemma 2.3.5) 

Let a,b,c,d ∈ ℝ.  

1. If a > 0 and b > 0, then a + b > 0.                          (Addition) 

   If a > 0 and b ≥ 0, then a + b > 0.  

   If a ≥ 0 and b ≥ 0, then a + b ≥ 0.  

2. If a < 0 and b < 0, then a + b < 0.  

   If a < 0 and b ≤ 0, then a + b < 0.  

   If a ≤ 0 and b ≤ 0, then a + b ≤ 0.  

 

3. If a > 0 and b > 0, then ab > 0.                       (Multiplication) 

   If a > 0 and b ≥ 0, then ab ≥ 0.  

   If a ≥ 0 and b ≥ 0, then ab ≥ 0.  

4. If a < 0 and b < 0, then ab > 0.  

   If a < 0 and b ≤ 0, then ab ≥ 0.  

   If a ≤ 0 and b ≤ 0, then ab ≥ 0.  

5. If a < 0 and b > 0, then ab < 0.  

   If a < 0 and b ≥ 0, then ab ≤ 0.  

   If a ≤ 0 and b > 0, then ab ≤ 0.  

   If a ≤ 0 and b ≥ 0, then ab ≤ 0. 
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Intervals 
(Definition 2.3.6) 

Let a,b ∈ ℝ. 

An open bounded interval is a set of the form 

(a,b) = {x ∈ ℝ | a < x < b}, where a ≤ b. 

A closed bounded interval is a set of the form 

[a,b] = {x ∈ ℝ | a ≤ x ≤ b}, where a ≤ b.  

A half-open interval is a set of the form 

[a,b) = {x ∈ ℝ | a ≤ x < b} or (a,b] = {x ∈ ℝ | a < x ≤ b}, where a ≤ b.  

An open unbounded interval is a set of the form 

(a,∞) = {x ∈ ℝ | a < x} or (−∞,b) = {x ∈ ℝ | x < b} or (−∞,∞) = ℝ. 

A closed unbounded interval is a set of the form 

[a,∞) = {x ∈ ℝ | a ≤ x} or (−∞,b] = {x ∈ ℝ | x ≤ b}. 

Interval Types 

• An open interval is either an open bounded interval or an open unbounded 
interval.  

• A closed interval is either a closed bounded interval or a closed unbounded 
interval.  

• A right unbounded interval is any interval of the form (a,∞), [a,∞) or (−∞,∞). 

• A left unbounded interval is any interval of the form (−∞,b), (−∞,b] or (−∞,∞). 

• A non-degenerate interval is any interval of the form (a,b), (a,b], [a,b) or [a,b] 
where a < b, or any unbounded interval. 

• The number a in intervals of the form [a,b), [a,b] or [a, ∞) is called the left 
endpoint of the interval.  

• The number b in intervals of the form (a,b], [a,b] or (−∞,b] is called the right 
endpoint of the interval. 

• An endpoint of an interval is either a left endpoint or a right endpoint.  

• The interior of an interval is everything in the interval other than its endpoints. 

Intervals 
(Lemma 2.3.7) 

Let I ⊆ ℝ be an interval.  

1. If x, y ∈ I and x ≤ y, then [x, y] ⊆ I.  

2. If I is an open interval, and if x ∈ I, then there is some δ > 0 such that [x 
− δ, x + δ] ⊆ I. 

Absolute Value 
(Definition 2.3.8) 

Let a ∈ ℝ. The absolute value of a, denoted |a|, is defined by 

|a| = (a, if a ≥ 0 −a, if a < 0. 

Properties of 
Absolute Value 
(Lemma 2.3.9) 

Let a,b ∈ ℝ.  

1. |a| ≥ 0, and |a| = 0 if and only if a = 0.  

2. −|a| ≤ a ≤ |a|.  

3. |a| = |b| if and only if a = b or a = −b.  

4. |a| < b if and only if −b < a < b, and |a| ≤ b if and only if −b ≤ a ≤ b. 

5. |ab| = |a|·|b|.  

6. |a + b| ≤ |a| + |b|                                                     (Triangle Inequality).  

7. ||a| − |b|| ≤ |a + b| and ||a| − |b|| ≤ |a − b|. 

Epsilon: ε ≈ 0 
(Lemma 2.3.10) 

Let a ∈ ℝ.  

1. a ≤ 0 if and only if a < ε for all ε > 0.  

2. a ≥ 0 if and only if a > −ε for all ε > 0.  

3. a = 0 if and only if |a| < ε for all ε > 0. 
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2.4 Real Numbers Include Natural, Integers, and Rationals (ℕ ⊂ ℤ ⊂ ℚ ⊂ ℝ) 
 

Theorem / Lemma / 
Definition / Corollary 

Description 

Inductive Set 
(Definition 2.4.1) 

Let S ⊆ ℝ be a set. The set S is inductive if it satisfies the following 
two properties.  
(a) 1 ∈ S.  
(b) If a ∈ S, then a + 1 ∈ S. 

Definition: ℕ 
(Definition 2.4.2) 

The set of natural numbers, denoted ℕ, is the intersection of all 
inductive subsets of ℝ. 

Properties of ℕ 
(Lemma 2.4.3) 

1. ℕ is inductive.  
2. If A ⊆ ℝ and A is inductive, then ℕ ⊆ A.  
3. If n ∈ ℕ then n ≥ 1.  

Peano Postulates 
(Theorem 2.4.4) 

Let s: N → N be defined by s(n) = n + 1 for all n ∈ ℕ.  
a. There is no n ∈ ℕ such that s(n) = 1.  
b. The function s is injective.  
c. Let G ⊆ ℕ be a set. Suppose that 1 ∈ G, and that if g ∈ G then 
s(g) ∈ G. Then G = ℕ. 

ℕ Closed Under +, · 
(Lemma 2.4.5) 

Let a,b ∈ ℕ. Then a + b ∈ ℕ and ab ∈ ℕ. 

Well-Ordering Principle 
(Theorem 2.4.6) 

Let G ⊆ ℕ be a non-empty set. Then there is some m ∈ G such that 
m ≤ g for all g ∈ G. 

Definition: ℤ 
(Definition 2.4.7) 

Let − ℕ = {x ∈ ℝ | x = −n for some n ∈ ℕ }. 

The set of integers, denoted ℤ, is defined by ℤ = − ℕ ⋃ {0} ⋃ ℕ. 

Properties of ℤ 
(Lemma 2.4.8) 

1. ℕ ⊆ ℤ.  

2. a ∈ ℕ if and only if a ∈ ℤ and a > 0.  

3. The three sets − ℕ, {0} and ℕ are mutually disjoint. 

ℤ Closed Under +, ·, − 
(Lemma 2.4.9) 

Let a,b ∈ ℤ. Then a + b ∈ ℤ, and ab ∈ ℤ, and −a ∈ ℤ. 

Integers are Discrete 
(Theorem 2.4.10) 

Let a,b ∈ ℤ.  

1. If a < b then a + 1 ≤ b.  

2. There is no c ∈ ℤ such that a < c < a + 1.  

3. If |a−b| < 1 then a = b. 

Definition: ℚ 
(Definition 2.4.11) 

The set of rational numbers, denoted ℚ, is defined by 

ℚ = {x ∈ ℝ | x = a / b for some a,b ∈ ℤ such that b ≠ 0}. 

The set of irrational numbers is the set ℝ − ℚ. 

Properties of ℚ 
(Lemma 2.4.12) 

1. ℤ ⊆ ℚ.  

2. q ∈ ℚ and q > 0 if and only if q = a / b for some a,b ∈ ℕ.  
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Fraction Manipulation 
(Lemma 2.4.13) 

Let a,b,c,d ∈ ℤ. Suppose that b ≠ 0 and d ≠ 0.  

1. a / b = 0 if and only if a = 0.  

2. a / b = 1 if and only if a = b.  

3. a / b = c / d if and only if ad = bc.  

4. a / b + c / d = (ad + bc) / bd.  

5. –(a / b) = (−a) / b = a / (−b).  

6. a / b · c / d = ac / bd.  

7. If a ≠ 0, then (a / b)−1 = b / a. 

ℚ Closed Under +, ·, −, −1 

(Corollary 2.4.14) 

Let a,b ∈ ℚ. Then a + b ∈ ℚ, and ab ∈ ℚ, and −a ∈ ℚ, and if a ≠ 0 

then a−1 ∈ ℚ.  
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Ch. 2.5: Induction and Recursion 
 

Proposition / 
Theorem / Lemma / 

Definition 
Description 

Principle of Mathematical 
Induction 
(Theorem 2.5.1) 

Let G ⊆ ℕ. Suppose that  
a. 1 ∈ G;  
b. if n ∈ G, then n + 1 ∈ G.  
Then G = ℕ. 

Proposition 2.5.2 Example induction proof 

Definition 2.5.3 
Let a,b ∈ ℤ.  
The set {a, ..., b} is defined by {a, ..., b} = {x ∈ ℤ | a ≤ x ≤ b}. 

Principle of Mathematical 
Induction—
Variant/Complete 
(Theorem 2.5.4) 

Let G ⊆ ℕ. Suppose that 
a. 1 ∈ G;  
b. if n ∈ ℕ and {1, ..., n} ⊆ G, then n + 1 ∈ G.  
Then G = ℕ. 

Definition by Recursion 
(Theorem 2.5.5) 

Let H be a set, let e ∈ H and let k: H → H be a function. Then 

there is a unique function f: ℕ → H such that f(1) = e, and that f(n 

+ 1) = k(f(n)) for all n ∈ ℕ. 

Definition of xn 
Definition 2.5.6 

Let x ∈ ℝ. The number xn ∈ ℝ is defined for all n ∈ ℕ by letting x1 = 
x, and xn+1 = x · xn for all x ∈ ℕ. 

Lemma 2.5.7 Let x ∈ ℝ. Suppose that x ≠ 0. Then xn ≠ 0 for all n ∈ ℕ. 

Definition: x0 
Definition 2.5.8 

Let x ∈ ℝ. Suppose that x ≠ 0.  

The number x0 ∈ ℝ is defined by x0 = 1.  

For each n ∈ ℕ, the number x−n is defined by x−n = (xn)−1. 

Power Rules 
Lemma 2.5.9 

Let x ∈ ℝ, and let n,m ∈ ℤ. Suppose that x ≠ 0.  

1. xnxm = xn+m.  

2. xn / xm = xn−m. 

Polynomial Function 
Definition 2.5.10 

Let A ⊆ ℝ be a set, and let f: A → ℝ be a function. The function f is 

a polynomial function if there are some n ∈ ℕ ∪ {0} and a0, a1 ,..., 

an ∈ ℝ such that f(x) = a0 +a1x + ··· + anxn for all x ∈ A. 

an+1 = n + an 
Theorem 2.5.11 

Let H be a set, let e ∈ H and let t: H × ℕ → H be a function. Then 

there is a unique function g: ℕ → H such that g(1) = e, and that g(n 

+ 1) = t((g(n), n)) for all n ∈ ℕ.  

Factorial: n! 
Example 2.5.12 

We want to define a sequence of real numbers a1, a2, a3 ,... such 

that a1 = 1, and an+1 = (n + 1)an for all n ∈ ℕ. 

max() Function 
(Example 2.5.13) 

𝑚𝑎𝑥{𝑥, 𝑦} = {
𝑥, 𝑖𝑓 𝑥 ≥ 𝑦
𝑦, 𝑖𝑓 𝑥 ≤ 𝑦

 

Exercise 2.5.3 
Let n ∈ ℕ, and let a1, a2, ..., an ∈ ℝ.  

Prove that |a1 + a2 +···+ an| ≤ |a1| + |a2| +···+ |an|. 
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Ch. 2.6: The Least Upper Bound Property 
 

Theorem / Lemma / 
Corollary / Definition 

Description 

Example 2.6.1 
(1) Let A = [3,5). Then 10 is an upper bound of A, and −100 is a 
lower bound. Hence A is bounded above and bounded below, and 
therefore A is bounded. 

Unique LUB / GLB 
(Lemma 2.6.2) 

Let A ⊆ ℝ be a non-empty set.  
1. If A has a least upper bound, the least upper bound is unique.  
2. If A has a greatest lower bound, the greatest lower bound is 
unique. 

lub A / glb A 
(Definition 2.6.3) 

Let A ⊆ ℝ be a non-empty set.  
If A has a least upper bound, it is denoted lub A.  
If A has a greatest lower bound, it is denoted glb A. 

Least Upper Bound 
Property 
(Theorem 1.7.9) 

Let A ⊆ ℝ be a set. If A is nonempty and bounded above, then A 
has a least upper bound. 

Greatest Lower Bound 
Property 
(Theorem 2.6.4) 

Let A ⊆ ℝ be a set. If A is non-empty and bounded below, then A 
has a greatest lower bound. 

Lemma 2.6.5 

Let A ⊆ ℝ be a non-empty set, and let ε > 0.  
1. Suppose that A has a least upper bound. Then there is some a ∈ 
A such that lub A − ε < a ≤ lub A.  
2. Suppose that A has a greatest lower bound. Then there is some 

b ∈ A such that glb A ≤ b < glb A + ε. 

No Gap Lemma 
(Lemma 2.6.6) 

Let A,B ⊆ ℝ be non-empty sets. Suppose that if a ∈ A and b ∈ B, 
then a ≤ b.  

1. A has a least upper bound and B has a greatest lower bound, 
and lub A ≤ glb B.  

2. lub A = glb B if and only if for each ε > 0, there are a ∈ A and b ∈ 
B such that b − a < ε. 

Archimedean Property 
(Theorem 2.6.7) 

Let a,b ∈ ℝ. Suppose that a > 0.  

Then there is some n ∈ ℕ such that b < na. 

ℝ In-between ℤs 
(Corollary 2.6.8) 

Let x ∈ ℝ.  

1. There is a unique n ∈ ℤ such that n − 1 ≤ x < n. If x ≥ 0, then n ∈ 

ℕ.  

2. If x > 0, there is some m ∈ ℕ such that 1 / m < x.  

Square Root 
Theorem 2.6.9 

Let p ∈ (0,∞). Then there is a unique x ∈ (0,∞) such that x2 = p. 

Square Root: √ 

Definition 2.6.10 

Let p ∈ (0,∞). The square root of p, denoted √p, is the unique x 

∈ (0,∞) such that x2 = p. 

√2 is Irrational 

(Theorem 2.6.11) 

Let p ∈ ℕ. Suppose that there is no u ∈ ℤ such that p = u2. Then 

√p ∉ ℚ. 
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ℚ ≠ LUB 
(Corollary 2.6.12) 

The ordered field ℚ does not satisfy the Least Upper Bound 
Property. 

ℝ Sandwich 
(Theorem 2.6.13) 

Let a,b ∈ ℝ. Suppose that a < b.  

1. There is some q ∈ ℚ such that a < q < b.  

2. There is some r ∈ ℝ − ℚ such that a < r < b. 

Heine–Borel Theorem 
(Theorem 2.6.14) 

Let C ⊆ ℝ be a closed bounded interval, let I be a non-empty set 
and let {𝐴𝑖}𝑖 ∈ I be a family of open intervals in ℝ. Suppose that 
C ⊆ ⋃𝑖 ∈ I

  𝐴𝑖. Then there are n ∈ ℕ and i1, i2, ..., in ∈ I such that 
C ⊆ ⋃𝑘=1

𝑛  𝐴𝑖𝑘. 

 
 

Ch. 2.7: Uniqueness of the Real Numbers 
 

Theorem Description 

Uniqueness of the Real 
Numbers 
(Theorem 2.7.1) 

Let R1 and R2 be ordered fields that satisfy the Least Upper Bound 

Property. Then there is a function f: R1 → R2 that is bijective, and 
that satisfies the following properties.  
Let x,y ∈ R1.  
a. f(x + y) = f(x) + f(y).  
b. f(xy) = f(x) f(y).  
c. If x < y, then f(x) < f(y). 
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Ch. 2.8: Decimal Expansion of Real Numbers 
 

Theorem / Lemma / 
Definition 

Description 

Base-p 
(Lemma 2.8.1) 

Let p ∈ ℕ. Suppose that p > 1. Let n ∈ ℕ. Then there is a unique k ∈ 
ℕ such that pk−1 ≤ n < pk. 

Base-p Numbers 
(Theorem 2.8.2) 

Let p ∈ ℕ. Suppose that p > 1. Let n ∈ ℕ. Then there are unique k ∈ 
ℕ and a0, a1, ..., ak−1 ∈ {0, ..., p − 1} such that ak−1 ≠ 0, and that 
 

𝑛 = ∑𝑎𝑖𝑝
𝑖 .

𝑘−1

𝑖=0

 

 

Base-p Fractions 
(Lemma 2.8.3) 

Let p ∈ ℕ. Suppose that p > 1. Let a1, a2, a3, ... ∈ {0, ..., p − 1}. Then 
the set 

{∑𝑎𝑖𝑝
−𝑖

𝑛

𝑖=1

| 𝑛 ∈ ℕ} 

 
is bounded below by 0 and is bounded above by 1. [0,1] 

Definition 2.8.4 

Let p ∈ ℕ. Suppose that p > 1. Let a1, a2, a3, ... ∈ {0, ..., p − 1}. The 

sum ∑ 𝑎𝑖𝑝
−𝑖∞

𝑖=1  is defined by 
 

∑𝑎𝑖𝑝
−𝑖

∞

𝑖=1

= 𝑙𝑢𝑏 {∑𝑎𝑖𝑝
−𝑖

𝑛

𝑖=1

| 𝑛 ∈ ℕ} 

 

Lemma 2.8.5 

Let p ∈ ℕ. Suppose that p > 1. Let a1, a2, a3, ... ∈ {0, ..., p − 1}.  

1. 0 ≤ ∑ 𝑎𝑖𝑝
−𝑖∞

𝑖=1  ≤ 1.  

2. ∑ 𝑎𝑖𝑝
−𝑖∞

𝑖=1 = 0 if and only if ai = 0 for all i ∈ ℕ.  

3. ∑ 𝑎𝑖𝑝
−𝑖∞

𝑖=1 = 1 if and only if ai = p − 1 for all i ∈ ℕ.  
4. Let m ∈ ℕ. Suppose that m > 1, and that am−1 ≠ p − 1. Then 
 

∑𝑎𝑖𝑝
−𝑖

∞

𝑖=1

≤ ∑ 𝑎𝑖𝑝
−𝑖

m−2

𝑖=1

+
𝑎𝑚−1 + 1

𝑝𝑚−1
, 

 
where equality holds if and only if ai = p − 1 for all i ∈ ℕ such that i 
≥ m. 
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Uniqueness of ℝ 
(Theorem 2.8.6) 

Let p ∈ ℕ. Suppose that p > 1. Let x ∈ (0,∞).  

1. There are k ∈ ℕ, and b0, b1, ..., bk−1 ∈ {0, ..., p − 1} and a1, a2, a3 ... 
∈ {0, ..., p − 1}, such that 

 

𝑥 = ∑𝑏𝑗𝑝
𝑗

k−1

𝑗=0

+∑𝑎𝑖𝑝
−𝑖

∞

𝑖=1

. 

 

2. It is possible to choose k ∈ ℕ, and b0, b1, ..., bk−1 ∈ {0, ..., p − 1}, 
and a1, a2, a3 ... ∈ {0, ..., p − 1} in Part (1) of this theorem such that 
there is no m ∈ ℕ such that ai = p − 1 for all i ∈ ℕ such that i ≥ m.  

 

3. If x > 1, then it is possible to choose k ∈ ℕ, and b0, b1, ..., bk−1 ∈ 
{0, ..., p − 1}, and a1, a2, a3 ... ∈ {0, ..., p − 1} in Part (1) of this 
theorem such that bk−1 ≠ 0.  

If 0 < x < 1, then it is possible to choose k = 1, and b0 = 0, and a1, a2, 
a3 ... ∈ {0, ..., p − 1} in Part (1) of this theorem.  

 

4. If the conditions of Parts (2) and (3) of this theorem hold, then 
the numbers k ∈ ℕ, and b0, b1, ..., bk−1 ∈ {0, ..., p − 1}, and a1, a2, a3 
... ∈ {0, ..., p − 1} in Part (1) are unique. 

Base p Representation 
(bj.ai) 
(Definition 2.8.7) 

Let p ∈ ℕ. Suppose that p > 1. Let x ∈ (0,∞). A base p 

representation of the number x is an expression of the form x = 
bk−1 ··· b1b0.a1a2a3 ···, where k ∈ ℕ and b0, b1, ..., bk−1 ∈ {0, ..., p − 1} 
and a1, a2, a3 ... ∈ {0, ..., p − 1} are such that 

 

𝑥 = ∑𝑏𝑗𝑝
𝑗

k−1

𝑗=0

+∑𝑎𝑖𝑝
−𝑖

∞

𝑖=1

. 

 

Division Algorithm: ÷ 
(Theorem 2.8.8) 

Let a ∈ ℕ ∪ {0} and b ∈ ℕ. Then there are unique q,r ∈ ℕ ∪ {0} 

such that a = bq + r and 0 ≤ r < b.       (q = quotient, r = remainder) 

Repeating Decimal 
(Definition 2.8.9) 

Let p ∈ ℕ. Suppose that p > 1. Let x ∈ (0,∞), and let x = bk−1 ··· 

b1b0.a1a2a3 ··· be a base p representation of x. This base p 
representation is eventually repeating if there are some r,s ∈ ℕ 

such that aj = aj+s for all j ∈ ℕ such that j ≥ r; in that case we write 

 

x = 𝑏𝑘−1 ··· 𝑏1𝑏0. 𝑎1𝑎2𝑎3 ··· 𝑎𝑟−1 𝑎𝑟  ···  𝑎r+s−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

 

Rational if Repeating 
Decimal 
(Theorem 2.8.10) 

Let p ∈ ℕ. Suppose that p > 1. Let x ∈ (0,∞). Then x ∈ ℚ if and only 

if x has an eventually repeating base p representation. 
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Ch. 3.2 Limits of Functions 
 

Theorem / Lemma / 
Definition 

Description 

Limit of a Function 
(Definition 3.2.1) 

Let I ⊆ ℝ be an open interval, let c ∈ I, let f: I − {c} → ℝ be a 
function and let L ∈ ℝ. The number L is the limit of f as x goes to c, 
written 

lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 

 
if for each ε > 0, there is some δ > 0 such that x ∈ I − {c} and 0 < |x 
− c| < δ imply |f(x) − L| < ε.  
 
If lim
𝑥→𝑐

𝑓(𝑥) = 𝐿, we also say that f converges to L as x goes to c.  

If f converges to some real number as x goes to c, we say that 
lim
𝑥→𝑐

𝑓(𝑥) exists. 

An open interval is an interval that does not include its end points. 

Logical Form of Limits 

(∀ε > 0) (∃δ > 0) [(x ∈ I − {c} ∧|x − c| < δ) → |f(x) − L| < ε] 
 
The order of the quantifiers in the definition of limits is absolutely 
crucial. 

Proof Format 

A typical proof that lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 must therefore have the 

following form: 
Proof. 

Let ε > 0 
. . . . (argumentation) . . .  
Let δ = f(ε) 
 . . . (argumentation) . . .  
Suppose that x ∈ I − {c} and |x − c| < δ 
. . . . (argumentation) . . .  
Therefore |f(x) − L| < ε. 

L is Unique 
(Lemma 3.2.2) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f: I − {c} → ℝ be a 
function. If lim

𝑥→𝑐
𝑓(𝑥) = 𝐿 for some L ∈ ℝ, then L is unique. 

Example Proofs 
(Example 3.2.3) 

(1) Prove that lim
𝑥→4

(5𝑥 + 1) = 21. 

Proof: 
Let ε > 0. Let δ = ε 5. Suppose that x ∈ ℝ − {4} and |x−4| < δ. Then 
|(5x + 1) − 21| = |5x − 20| = 5|x − 4| < 5δ = 5 · ε 5 = ε.  

 

(2) Prove that lim
𝑥→3

(𝑥2 − 1) = 8. 

Proof: 

Let ε > 0. Let δ = min{ε 7 ,1}. Suppose that x ∈ℝ − {3} and |x−3| < 
δ. Then |x−3| < 1, which implies that −1 < x−3 < 1, and therefore 2 
< x < 4, and hence 5 < x + 3 < 7, and we conclude that 5 < |x + 3| < 

7. Then |(x2 − 1) − 8| = |x2 − 9| = |x − 3|·|x + 3| < δ · 7 ≤ ε 7 · 7 = 

ε. 
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(3) Prove that lim
𝑥→0

(
1

𝑥
). does not exist. 

Proof: 

Suppose that lim
𝑥→0

(
1

𝑥
) = 𝐿 for some L ∈ ℝ. Let ε = |L| / 2 if L ≠ 0, 

and let ε = 1 if L = 0. We consider the case when L > 0; the other 

cases are similar. Let δ > 0. Because L > 0, then L + ε > 0. Let x = 

min{δ/2, 1 / (L + ε)}. Then x ∈ (0, ∞) and |x − 0| ≤ δ / 2 < δ. On 

the other hand, because x ≤ 1 / (L + ε), it follows that L + ε ≤ 1 / x, 

and hence 1 / x − L ≥ ε, which implies that |1 / x − L| ≮ ε. 

Sign-Preserving Property 
for Limits 
(Theorem 3.2.4) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f: I − {c} → ℝ be a 

function. Suppose that lim
𝑥→𝑐

𝑓(𝑥) exists.  

1. If lim
𝑥→𝑐

𝑓(𝑥) > 0, then there is some M > 0 and some δ > 0 such 

that x ∈ I − {c} and |x − c| < δ imply f(x) > M.  
2. If lim

𝑥→𝑐
𝑓(𝑥) < 0, then there is some N < 0 and some δ > 0 such 

that x ∈ I − {c} and |x − c| < δ imply f(x) < N. 

Bounded 
(Lemma 3.2.7) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f: I − {c} → ℝ be a 

function. If lim
𝑥→𝑐

𝑓(𝑥) exists, then there is some δ > 0 such that the 

restriction of f to (I − {c}) ∩ (c − δ, c + δ) is bounded. 

Zero 
(Lemma 3.2.8) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f,g: I − {c} → ℝ be 

functions. Suppose that lim
𝑥→𝑐

𝑓(𝑥) = 0, and that g is bounded. Then 

lim
𝑥→𝑐

𝑓(𝑥) 𝑔(𝑥) = 0. 

Functions for +, -, k, •, ÷ 
(Definition 3.2.9) 

Let A,B be sets, let f: A → ℝ and g: B → ℝ be functions and let k ∈ 

ℝ.  

1. The function f + g: A ∩ B → ℝ is defined by [f + g](x) = f(x) + g(x) 

for all x ∈ A ∩ B. 

2. The function f − g: A ∩ B → ℝ is defined by [f − g](x) = f(x) − g(x) 

for all x ∈ A ∩ B.  

3. The function k f: A → ℝ is defined by [k f ](x) = k f(x) for all x ∈ A.  

4. The function f · g: A ∩ B → ℝ is defined by [f · g](x) = f(x) · g(x) 

for all x ∈ A ∩ B.  

5. Let C = (A ∩ B) − {b ∈ B | g(b) = 0}. The function f g: C → ℝ is 

defined by [f/g] (x) = f(x) / g(x) for all x ∈ C.  

6. The function | f |: A → ℝ is defined by | f |(x) = | f(x) | for all x 

∈ A. 
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Limits for +, -, k, •, ÷ 
(Theorem 3.2.10) 

Let I ⊆ ℝ be an open interval, let c ∈ I, let f,g: I − {c} → ℝ be 

functions and let k ∈ ℝ. Suppose that lim
𝑥→𝑐

𝑓(𝑥) and lim
𝑥→𝑐

𝑔(𝑥) exist.  

1. lim
𝑥→𝑐

[𝑓 + 𝑔](𝑥) exists and lim
𝑥→𝑐

[𝑓 + 𝑔](𝑥) = lim
𝑥→𝑐

𝑓(𝑥) +

lim
𝑥→𝑐

𝑔(𝑥).  

2. lim
𝑥→𝑐

[𝑓 − 𝑔](𝑥) exists and lim
𝑥→𝑐

[𝑓 − 𝑔](𝑥) = lim
𝑥→𝑐

𝑓(𝑥) −

lim
𝑥→𝑐

𝑔(𝑥).  

3. lim
𝑥→𝑐

[𝑘 · 𝑓](𝑥) exists and lim
𝑥→𝑐

[𝑘 · 𝑓](𝑥) = 𝑘 · lim
𝑥→𝑐

𝑓(𝑥).  

4. lim
𝑥→𝑐

[𝑓 · 𝑔](𝑥) exists and lim
𝑥→𝑐

[𝑓 · 𝑔](𝑥) = lim
𝑥→𝑐

𝑓(𝑥) · lim
𝑥→𝑐

𝑔(𝑥).  

5. lim
𝑥→𝑐

[
𝑓

𝑔
] (𝑥) exists and lim

𝑥→𝑐
[
𝑓

𝑔
] (𝑥) =

lim
𝑥→𝑐

𝑓(𝑥)

lim
𝑥→𝑐

𝑔(𝑥)
 if lim
𝑥→𝑐

𝑔(𝑥) ≠ 0. 

Limits for f ∘ g 
(Theorem 3.2.12) 

Let I,J ⊆ ℝ be open intervals, let c ∈ I, let d ∈ J and let g: I − {c} → J 

− {d} and f: J − {d} → ℝ be functions. Suppose that lim
𝑦→𝑐

𝑔(𝑦) = 𝑑 

and that lim
𝑥→𝑑

𝑓(𝑥) exist. Then lim
𝑦→𝑐

(𝑓 ∘ 𝑔)(𝑦) exists, and 

lim
𝑦→𝑐

(𝑓 ∘ 𝑔)(𝑦) = lim
𝑥→𝑑

𝑓(𝑥). 

Limits: f ≤ g 
(Theorem 3.2.13) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f,g: I − {c} → ℝ be 

functions. Suppose that f(x) ≤ g(x) for all x ∈ I − {c}. If lim
𝑥→𝑐

𝑓(𝑥) and 

lim
𝑥→𝑐

𝑔(𝑥) exist, then lim
𝑥→𝑐

𝑓(𝑥) ≤  lim
𝑥→𝑐

𝑔(𝑥).  

Squeeze Theorem for 
Functions 
(Theorem 3.2.14) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f,g,h: I − {c} → ℝ be 

functions. Suppose that f(x) ≤ g(x) ≤ h(x) for all x ∈ I − {c}. If 

lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 = lim
𝑥→𝑐

ℎ(𝑥) for some L ∈ ℝ, then lim
𝑥→𝑐

𝑔(𝑥) exists and 

lim
𝑥→𝑐

𝑔(𝑥) = 𝐿.  
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Left/Right Hand Limits 
(Definition 3.2.15) 

Let I ⊆ ℝ be an interval, let c ∈ I, let f: I − {c} → ℝ be a function 

and let L ∈ ℝ.  

 

1. Suppose that c is not a right endpoint of I. The number L is the 
right-hand limit of f at c, written 

 

lim
𝑥→𝑐+

𝑓(𝑥) = 𝐿, 

 

if for each ε > 0, there is some δ > 0 such that x ∈ I − {c} and c < x < 
c + δ imply |f(x) − L| < ε. If lim

𝑥→𝑐+
𝑓(𝑥) = 𝐿, we also say that f 

converges to L as x goes to c from the right. If f converges to some 
real number as x goes to c from the right, we say that lim

𝑥→𝑐+
𝑓(𝑥) 

exists.  
 

2. Suppose that c is not a left endpoint of I. The number L is the 
left-hand limit of f at c, written 

 

lim
𝑥→𝑐−

𝑓(𝑥) = 𝐿, 

 

if for each ε > 0, there is some δ > 0 such that x ∈ I − {c} and c − δ < 
x < c imply |f(x) − L| < ε. If lim

𝑥→𝑐−
𝑓(𝑥) = 𝐿 , we also say that f 

converges to L as x goes to c from the left. If f converges to some 
real number as x goes to c from the left, we say that  
lim
𝑥→𝑐−

𝑓(𝑥) = 𝐿, exists.  

 

3. A one-sided limit is either a right-hand limit or a left-hand limit. 

All 3 Limits are Equal 
(Lemma 3.2.17) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f: I − {c} → ℝ be a 

function. Then lim
𝑥→𝑐

𝑓(𝑥) exists if and only if lim
𝑥→𝑐+

𝑓(𝑥) and 

lim
𝑥→𝑐−

𝑓(𝑥) exist and are equal, and if these three limits exist then 

they are equal.  

y = mx + b 
(Exercise 3.2.1) 

Let m,b,c ∈ ℝ. Using only the definition of limits, prove that 

 

lim
𝑥→𝑐

(𝑚𝑥 + 𝑏) = 𝑚𝑐 + 𝑏 

 

Exercise 3.2.5 

Let J ⊆ I ⊆ ℝ be open intervals, let c ∈ J and let f: I − {c} → ℝ be a 

function. Prove that lim
𝑥→𝑐

𝑓(𝑥) exists if and only if lim
𝑥→𝑐

𝑓|𝐽(𝑥) exists, 

and if these limits exist, then they are equal. 
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Ch. 3.3 Continuity 
 

Theorem / Lemma / 
Corollary / Definition 

/ Examples 
Description 

Continuity: ε, δ 
(Definition 3.3.1) 

Let A ⊆ ℝ be a set, and let f: A → ℝ be a function.  
 
1. Let c ∈ A. The function f is continuous at c if for each ε > 0, there 
is some δ > 0 such that x ∈ A and |x − c| < δ imply |f(x) − f(c)| < ε. 
The function f is discontinuous at c if f is not continuous at c; in 
that case we also say that f has a discontinuity at c.  
 
2. The function f is continuous if it is continuous at every number 
in A. The function f is discontinuous if it is not continuous. 

Continuity: f(c) 
(Lemma 3.3.2) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f: I → ℝ be a 
function. Then f is continuous at c if and only if  
lim
𝑥→𝑐

𝑓(𝑥) exists and lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐). 

Logical Form of Continuity 

(∀c ∈ A)[ f is continuous at c] 
which can be written completely in symbols as 

(∀c ∈ A) (∀ε > 0) (∃δ > 0) [(x ∈ A ∧ |x − c| < δ) → |f(x) − f(c)| < ε]. 
The order of the quantifiers is crucial. 
Applies where we can find δ that depends upon ε and c. 

Example 3.3.3 

(1) f(x) = mx + b 
(2) p(x) = 1/x 
(3) Standard elementary functions (that is, polynomials, power 
functions, logarithms, exponentials and trigonometric functions). 
All of these functions are continuous. 
(4) y = tan(x) 
(5) g(x) = |x|/x 
(6) r(x) = 1 or 0 
(7) s(x) = 1/q 

Sign-Preserving Property 
for Continuous Functions 
(Theorem 3.3.4) 
 

Let A ⊆ ℝ be a non-empty set, let c ∈ A and let f: A → ℝ be a 
function. Suppose that f is continuous at c.  
 
1. If f(c) > 0, then there is some M > 0 and some δ > 0 such that x ∈ 
A and |x − c| < δ imply f(x) > M.  
 
2. If f(c) < 0, then there is some N < 0 and some δ > 0 such that x ∈ 
A and |x − c| < δ imply f(x) < N.  

+, -, ·, ÷ Continuous at x = c 
(Theorem 3.3.5) 

Let A ⊆ ℝ be a non-empty set, let c ∈ A, let f,g: A → ℝ be 

functions and let k ∈ ℝ. Suppose that f and g are continuous at c.  
1. f + g is continuous at c.  
2. f − g is continuous at c.  
3. k · f is continuous at c.  
4. f · g is continuous at c.  
5. If g(c) ≠ 0, then f/g is continuous at c. 
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+, -, ·, ÷ Continuous 
Everywhere 
(Corollary 3.3.6) 

Let A ⊆ ℝ be a non-empty set, let f,g: A → ℝ be functions and let k 

∈ ℝ. Suppose that f and g are continuous. Then f + g, f − g, k · f and 
f · g are continuous, and if g(x) ≠ 0 for all x ∈ I then f / g is 
continuous. 

Example 3.3.7 
(1) fn(x) = xn 

(2) p(x) = 1/x 

Composite Functions (f ◦ g) 
(Theorem 3.3.8) 

Let A,B ⊆ ℝ be non-empty sets, let c ∈ A and let g: A → B and f: B 

→ ℝ be functions. 

 

1. Suppose that A is an open interval. If lim
𝑥→𝑐

𝑔(𝑥) exists and is in B, 

and if f is continuous at lim
𝑥→𝑐

𝑔(𝑥), then lim
𝑥→𝑐

𝑓(𝑔(𝑐)) = f(lim
𝑥→𝑐

𝑔(𝑥)). 

2. If g is continuous at c, and if f is continuous at g(c), then f ◦ g is 
continuous at c. 

3. If g and f are continuous, then f ◦ g is continuous.  

Composition of Two 
Discontinuous Functions 
(Example 3.3.9) 

(1) h(x) = 1 or 0, k(x) = 2 or 0 m → Better = Continuous 

(2) r(x) = 1 or 0, s(x) = 1/q      → Worse Discontinuity 

Pasting Lemma 
(Lemma 3.3.10) 

Let [a,b] ⊆ ℝ and [b, c] ⊆ ℝ be non-degenerate closed bounded 

intervals, and let f: [a,b] → ℝ and g: [b,c] → ℝ be functions. Let h: 

[a,c] → ℝ be defined by h(x) = (f(x), if x ∈ [a,b], g(x), if x ∈ [b,c]. If f 

and g are continuous, and if f(b) = g(b), then h is continuous. 

Extension of a Function 
(Example 3.3.11) 

f(x) = x      → Can be extended 

p(x) = 1/x  → Cannot be extended 
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Ch. 3.4 Uniform Continuity 
 

Lemma / Corollary / 
Definition / Examples 

Description 

Uniformly Continuous (UC) 
(Definition 3.4.1) 

Let A ⊆ ℝ be a set, and let f: A → ℝ be a function. The function f is 
uniformly continuous if for each ε > 0, there is some δ > 0 such 
that x, y ∈ A and |x − y| < δ imply |f(x) − f(y)| < ε. 

Logical Form of UC 
(∀ε > 0) (∃δ > 0) (∀x ∈ A) (∀y ∈ A) [|x − y| < δ → |f(x)− f(y)| < ε] 

The order of the quantifiers is crucial. 
Applies where we can find δ that depends only upon ε, and not c. 

UC → C 
(Lemma 3.4.2) 

Let A ⊆ ℝ be a set, and let f: A → ℝ be a function. If f is uniformly 
continuous, then f is continuous. 

Example 3.4.3 
(1) f(x) = mx + b                             → Is UC 
(2) g(x) = 1/x where x ∈ ℝ − {0}  → Is not UC 

(3) g(x) = 1/x where x ∈ (1, ∞)   → Is UC 

Close Bounded Interval C 
→ UC 
(Theorem 3.4.4) 

Let C ⊆ ℝ be a closed bounded interval, and let f: C → ℝ be a 
function. If f is continuous, then f is uniformly continuous. 

UC → Bounded 
(Theorem 3.4.5) 

Let A ⊆ ℝ be a non-empty set, and let f: A → ℝ be a function. 

Suppose that A is bounded. If f is uniformly continuous, then f is 
bounded. 

C → Bounded 
(Corollary 3.4.6) 

Let C ⊆ ℝ be a closed bounded interval, and let f: C → ℝ be a 

function. If f is continuous, then f is bounded. 
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Ch. 3.5 Two Important Theorems 
 

Axiom / Theorem / 
Lemma / Definition 

Description 

Extreme Value Theorem: 
Min. and Max. Exist 
(Theorem 3.5.1) 

Let C ⊆ ℝ be a closed bounded interval, and let f: C → ℝ be a 
function. Suppose that f is continuous. Then there are xmin, xmax ∈ C 
such that f(xmin) ≤ f(x) ≤ f(xmax) for all x ∈ C. 

 

Intermediate Value 
Theorem 
(Theorem 3.5.2) 

Let [a,b] ⊆ ℝ be a closed bounded interval, and let f: [a,b] → ℝ be 
a function. Suppose that f is continuous. Let r ∈ ℝ. If r is strictly 
between f(a) and f(b), then there is some c ∈ (a,b) such that f(c) = 
r. We can assume f(a) < r < f(b). 

 
 

Contrapositive for a Proof 
(Lemma 3.5.3) 

Let F be an ordered field. Suppose that F does not satisfy the 
Least Upper Bound Property. Let A ⊆ F be a non-empty set such 
that A is bounded above, but A has no least upper bound. Let a ∈ 
A, and let b ∈ F be an upper bound of A. Let Q = {x ∈ [a,b] | x is an 
upper bound of A} and P = [a,b] − Q.  
 

1. P ∪ Q = [a,b] and P ∩ Q = ∅.  

2. a < b, and A ∩ [a,b] ⊆ P, and a ∈ P, and b ∈ Q.  
3. If x ∈ P and z ∈ Q, then x < z.  
4. If x ∈ P, then there is some y ∈ P such that x < y. If z ∈ Q, then 

there is some w ∈ Q such that w < z.  
5. The set P does not have a least upper bound, and the set Q does 
not have a greatest lower bound.  

Theorem 3.5.4 

The following are equivalent.  
a1. The Least Upper Bound Property.  
a2. The Greatest Lower Bound Property. 
b. The Heine–Borel Theorem.  
c. The Extreme Value Theorem.  
d. The Intermediate Value Theorem.  
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Ch. 4.2 The Derivative 
 

Definition / Theorem 
/ Example 

Description 

Definition of Derivative 
with x - c 
(Definition 4.2.1) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f: I →ℝ be a 
function.  
 
1. The function f is differentiable at c if 
 

lim
𝑥→𝑐

𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
 

 
exists; if this limit exists, it is called the derivative of f at c, and it is 
denoted f’(c).  
 
2. The function f is differentiable if it is differentiable at every 
number in I. If f is differentiable, the derivative of f is the function 

f’: I → ℝ whose value at x is f’(x) for all x ∈ I. 

Definition of Derivative 
with h 
(Lemma 4.2.2) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f: I → ℝ be a 
function. Then f is differentiable at c if and only if 
 

lim
ℎ→0

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
 

 
exists, and if this limit exists it equals f’(c). 

Example 4.2.3 

(1) f(x) = mx + b so (mx + b)’ = m. 
(2) g(x) = x2 so g’(x) = 2x 

(3) k(x) = |x|so k’(x) does not exist unless x ∈ (0, ∞). 

Differentiable → 
Continuous 
(Theorem 4.2.4) 

Let I ⊆ ℝ be an open interval, and let f: I → ℝ be a function. Let c 
∈ I.  
If f is differentiable at c, then f is continuous at c.  
If f is differentiable, then f is continuous. 

Continuous vs. 
Differentiable 
(Example 4.2.5) 

(1) f(x) = {x2 sin (1/x2), if x ≠ 0} 
        {0, if x = 0}.  
So, f’ exists everywhere, but f’ is not continuous.  
 

(2) g(x) = {  x2, if x ≥ 0} 

         {- x2, if x < 0}  
So, g’ is continuous, however g’ is not differentiable. 
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nth Derivatives 
(Definition 4.2.6) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f: I → ℝ be a 

function. 

Suppose that f is differentiable at c.  

The function f is twice differentiable at c if f’ is differentiable at c.  

If f’ is differentiable at c, the derivative (f’)’(c) is called the second 
derivative of f at c, and it is denoted f’’(c).  

The function f is twice differentiable if it is twice differentiable at 
every number in I.  

If f is twice differentiable, the second derivative of f is the function 

f’’: I → ℝ whose value at x is f’’(x) for all x ∈ I. 

 

The nth derivative of f for all n ∈ ℕ is defined as follows, using 

Definition by Recursion.  

If f is differentiable at c, the first derivative of f at c is simply the 
derivative of f at c.  

Suppose that f is n−1 times differentiable at c.  

The (n−1)-st derivative of f at c is denoted f(n−1)(c).  

The function f is n times differentiable at c if f(n−1) is differentiable 
at c.  

If f(n−1) is differentiable at c, the derivative (f(n−1) )’(c) is called the nth 
derivative of f at c, and it is denoted f(n)(c).  

The function f is n times differentiable if it is n times differentiable 
at every number in I.  

If f is n times differentiable, the nth derivative of f is the function 

f(n): I → ℝ whose value at x is f(n)(x) for all x ∈ I.  

 

The 0th derivative of f is f(0) = f. 

Continuously/Infinitely 
Differentiable 
(Definition 4.2.7) 

Let I ⊆ ℝ be an open interval, and let f: I → ℝ be a function.  

The function f is continuously differentiable if f is differentiable 
and f’ is continuous.  

 

Let n ∈ ℕ. The function f is continuously differentiable of order n 

if f(i) exists and is continuous for all i ∈ {1, ..., n}.  

 

The function f is infinitely differentiable (also called smooth) if f(i) 

exists all i ∈ ℕ. 
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One-Sided Derivatives 
(Definition 4.2.8) 

Let I ⊆ ℝ be a non-degenerate interval, let c ∈ I and let f: I → ℝ be 

a function. 

 

1. Suppose that c is a left endpoint of I. The function f is 
differentiable at c if the limit 

 

lim
𝑥→𝑐+

𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
= lim

ℎ→0+

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
 

 

exists; if this limit exists, it is called the one-sided derivative of f at 
c, and it is denoted f’(c).  

 

2. Suppose that c is a right endpoint of I. The function f is 
differentiable at c if the limit 

 

lim
𝑥→𝑐−

𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
= lim

ℎ→0−

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
 

 

exists; if this limit exists, it is called the one-sided derivative of f at 
c, and it is denoted f’(c).  

 

3. The function f is differentiable if the restriction of f to the 
interior of I is differentiable in the usual sense, and if f is 
differentiable at the endpoints of I in the sense of Parts (1) and (2) 
of this definition if there are endpoints. 

Symmetric Derivative 
(Exercise 4.2.7) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f: I → ℝ be a 

function. The function f is symmetrically differentiable at c if 

 

lim
ℎ→0

𝑓(𝑐 + ℎ) − 𝑓(𝑐 − ℎ)

2ℎ
 

 

exists; if this limit exists, it is called the symmetric derivative of f 
at c. 
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Ch. 4.3 Computing Derivatives 
 

Theorem / Corollary Description 

Derivatives: +, −, •, ÷ 
(Theorem 4.3.1) 

Let I ⊆ ℝ be an open interval, let c ∈ I, let f,g: I → ℝ be functions 
and let k ∈ ℝ. Suppose that f and g are differentiable at c.  
1. f + g is differentiable at c and [f + g]’(c) = f’(c) + g’(c).  
2. f − g is differentiable at c and [f − g]’(c) = f’(c) – g’(c).  
3. kf is differentiable at c and [kf]’(c) = k f’(c).  
4. (Product Rule) fg is differentiable at c and [fg]’(c) = f’(c)g(c) + 
f(c)g’(c).  
5. (Quotient Rule) If g(c) ≠ 0, then f/g is differentiable at c and 
 

[
𝑓

𝑔
]

′

(𝑐) =
𝑓′(𝑐)𝑔(𝑐) − 𝑓(𝑐)𝑔′(𝑐)

[𝑔(𝑐)]2
 

 

Entire Function 
(Corollary 4.3.2) 

Let I ⊆ ℝ be an open interval, let f,g: I → ℝ be functions and let k 
∈ ℝ. If f and g are differentiable, then f + g, f − g, kf and fg are 
differentiable, and if g(x) ≠ 0 for all x ∈ I then f/g is differentiable. 

Chain Rule 
(Theorem 4.3.3) 

Let I,J ⊆ ℝ be open intervals, let c ∈ I and let f: I → J and g: J → ℝ 
be functions. Suppose that f is differentiable at c, and that g is 
differentiable at f(c). Then g ◦ f is differentiable at c and [g ◦ f]’(c) = 
g’ (f(c))· f’(c). 

Chain Rule Differentiable 
(Corollary 4.3.4) 

Let I,J ⊆ ℝ be open intervals, and let f: I → J and g: J → ℝ be 
functions. If f and g are differentiable, then g ◦ f is differentiable. 
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Ch. 4.4 The Mean Value Theorem 
 

Axiom / Theorem / 
Lemma / Definition 

Description 

Min/Max at a Point, f’(c) = 
0 
(Lemma 4.4.1) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, let c ∈ 

(a,b) and let f: [a,b] → ℝ be a function.  
Suppose that f is differentiable at c.  
If either f(c) ≥ f(x) for all x ∈ [a,b] or f(c) ≤ f(x) for all x ∈ [a,b], then 
f’(c) = 0. 

 

f’(c) = 0, But Not a 
Min/Max 
(Example 4.4.2) 

Let f: [−1,1] → ℝ be defined by f(x) = x3 for all x ∈ [−1,1]. It can be 
verified using the definition of derivatives that f’(0) = 0; the details 
are left to the reader. On the other hand, it is certainly not the 
case that f(0) ≥ f(x) for all x ∈ [−1,1], or that f(0) ≤ f(x) for all x ∈ 
[−1,1]. 

Rolle’s Theorem: f(a) = f(b) 
(Lemma 4.4.3) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 

let f: [a,b] → ℝ be a function.  
Suppose that f is continuous on [a,b] and differentiable on (a,b).  
If f(a) = f(b), then there is some c ∈ (a,b) such that f’(c) = 0. 
 

 
Note: Rolle’s Theorem is a special case of the Mean Value 
Theorem where f(a) = f(b). 
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Mean Value Theorem 
(Average Slope) 
(Theorem 4.4.4) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 

let f: [a,b] → ℝ be a function.  
Suppose that f is continuous on [a,b] and differentiable on (a,b). 
Then there is some c ∈ (a,b) such that 

𝑓′(𝑐) =  
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
. 

 

 
 

 
Note: The Mean Value Theorem is a special case of Cauchy’s Mean 
Value Theorem where g(x) = x. 
 
Note: The Mean Value Theorem is a special case of Taylor’s 
Theorem where n = 0, c = a, and x = b 
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Cauchy’s Mean Value 
Theorem 
(Theorem 4.4.5) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 

let f,g: [a,b] → ℝ be functions.   

Suppose that f and g are continuous on [a,b] and differentiable on 
(a,b).  
Then there is some c ∈ (a,b) such that 
 

[𝑓(𝑏) − 𝑓(𝑎)]𝑔′(𝑐) = [𝑔(𝑏) − 𝑔(𝑎)]𝑓′(𝑐). 
 

 
 

Cauchy → Mean Value 
Theorem 

The Mean Value Theorem is the special case of Cauchy’s Mean 

Value Theorem (Theorem 4.4.5) where the function g is defined by 

g(x) = x for all x ∈ [a,b]. 

Taylor’s Theorem 
(Theorem 4.4.6) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, let c ∈ 

(a,b), let f: [a,b] → ℝ be a function and let n ∈ ℕ ∪ {0}.  

Suppose that f(k) exists and is continuous on [a,b] for each k ∈ {0, 
..., n}, and that f(n+1) exists on (a,b).  

Let x ∈ [a,b].  

Then there is some p strictly between x and c (except that p = c 
when x = c) such that 

 

𝑓(𝑥) = ∑
𝑓(𝑘)(𝑐)

𝑘!

𝑛

𝑘=0

(𝑥 − 𝑐)𝑘 +
𝑓(𝑘+1)(𝑝)

(𝑛 + 1)!
(𝑥 − 𝑐)𝑛+1. 

. 

Parallel Functions 
(Lemma 4.4.7) 

Let I ⊆ ℝ be a non-degenerate interval, and let f,g: I → ℝ be 

function.  

Suppose that f and g are continuous on I and differentiable on the 
interior of I.  

1. f’(x) = 0 for all x in the interior of I if and only if f is constant on I.  

2. f’(x) = g’(x) for all x in the interior of I if and only if there is some 

C ∈ ℝ such that f(x) = g(x) + C for all x ∈ I. 

Antiderivative (F’ = f) 
(Definition 4.4.8) 

Let I ⊆ ℝ be an open interval, and let f: I → ℝ be a function.  

An antiderivative of f is a function F: I → ℝ such that F is 

differentiable and F’ = f. 
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Constant of Integration (+ 
C) 
(Corollary 4.4.9) 

Let I ⊆ ℝ be a non-degenerate open interval, and let f: I → ℝ be a 

function.  

If F,G: I → ℝ are antiderivatives of f, then there is some C ∈ ℝ such 

that F(x) = G(x) + C for all x ∈ I. 

Intermediate Value 
Theorem for Derivatives 
(Theorem 4.4.10) 

Let I ⊆ ℝ be an open interval, and let f: I → ℝ be a function.  

Suppose that f is differentiable.  

Let a,b ∈ I, and suppose that a < b.  

Let r ∈ ℝ.  

If r is strictly between f’(a) and f’(b), then there is some c ∈ (a,b) 
such that f’(c) = r. 

g(x) ≠ f’(x) 
(Example 4.4.11) 

Let g: ℝ → ℝ be defined by 

 

𝑔(𝑥) = {
1, 𝑖𝑓 𝑥 ≤ 1
 2, 𝑖𝑓 𝑥 > 1.

 

 

Then g is not the derivative of any function, because it does not 
satisfy the conclusion of the Intermediate Value Theorem for 
Derivatives (Theorem 4.4.10). 
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Ch. 4.5 Increasing and Decreasing Functions, Part I: Local and Global Extrema 
 

Axiom / Theorem / 
Lemma / Definition 

Description 

f(x) vs. Increasing / 
Decreasing / Monotone 
(Definition 4.5.1) 

Let A ⊆ ℝ be a set, and let f: A → ℝ be a function.  
1. The function f is increasing if x < y implies f(x) ≤ f(y) for all x,y ∈ 
A.  
2. The function f is strictly increasing if x < y implies f(x) < f(y) for 
all x, y ∈ A.  
3. The function f is decreasing if x < y implies f(x) ≥ f(y) for all x,y ∈ 
A.  
4. The function f is strictly decreasing if x < y implies f(x) > f(y) for 
all x, y ∈ A. 
5. The function f is monotone if it is either increasing or 
decreasing.  
6. The function f is strictly monotone if it is either strictly 
increasing or strictly decreasing. 

f’(x) vs. Increasing 
(Theorem 4.5.2) 

Let I ⊆ ℝ be a non-degenerate interval, and let f: I → ℝ be a 
function. Suppose that f is continuous on I and differentiable on 
the interior of I.  
1. f’(x) ≥ 0 for all x in the interior of I if and only if f is increasing on 
I.  
2. If f’(x) > 0 for all x in the interior of I, then f is strictly increasing 
on I.  
3. f’(x) ≤ 0 for all x in the interior of I if and only if f is decreasing on 
I.  
4. If f’(x) < 0 for all x in the interior of I, then f is strictly decreasing 
on I. 

Example 4.5.3 

Let f: ℝ → ℝ be defined by f(x) = x3 for all x ∈ ℝ.  
The function f is strictly increasing, as seen by Exercise 2.3.3 (1); 
that exercise does not make use of derivatives.  
However, we know by Exercise 4.3.5 that f’(x) = 3x2 for all x ∈ ℝ, 
and hence f’(0) = 0.  
Therefore Theorem 4.5.2 (2) cannot be made into an “if and only 
if” statement.  
A similar example shows that Theorem 4.5.2 (4) cannot be made 
into an “if and only if” statement. 
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Local/Global  Extremum 
(Definition 4.5.4) 

Let A ⊆ ℝ be a set, let c ∈ A and let f: A → ℝ be a function.  
1. The number c is a local maximum of f if there is some δ > 0 such 
that x ∈ A and |x − c| < δ imply f(x) ≤ f(c).  
2. The number c is a local minimum of f if there is some δ > 0 such 
that x ∈ A and |x − c| < δ imply f(x) ≥ f(c).  
3. The number c is a local extremum of f if it is either a local 
maximum or a local minimum.  
4. The number c is a global maximum of f if f(x) ≤ f(c) for all x ∈ A.  
5. The number c is a global minimum of f if f(x) ≥ f(c) for all x ∈ A.  
6. The number c is a global extremum of f if it is either a global 
maximum or a global minimum. 

Local Min/Max 
(Lemma 4.5.5) 

Let A ⊆ ℝ be a set, let c ∈ A and let f: A → ℝ be a function.  

1. If there is some δ > 0 such that f|A ∩ (c − δ, c] is increasing and f|A ∩ 

[c, c + δ) is decreasing, then c is a local maximum of f.  

2. If there is some δ > 0 such that f|A ∩ (c − δ, c] is decreasing and f|A ∩ 

[c, c + δ) is increasing, then c is a local minimum of f. 

Critical Point 
(Definition 4.5.6) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f: I → ℝ be a 

function. The number c is a critical point of f if either f is 
differentiable at c and f 0 (c) = 0, or f is not differentiable at c. 

Extremum → Critical Point 
(Lemma 4.5.7) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f: I → ℝ be a 

function. If c is a local extremum of f, then c is a critical point of f. 

Example 4.5.8 

Let f: [−1,1] → ℝ be defined by f(x) = x3 for all x ∈ [−1,1].  

Because f’(x) = 3x2 for all x ∈ ℝ, then f’(0) = 0, and hence 0 is a 
critical point of f.  

However, as remarked in Example 4.5.3, the function f is strictly 
increasing, and therefore 0 is neither a local maximum nor a local 
minimum of f. 

First Derivative Test 
(Theorem 4.5.9) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f: I → ℝ be a 

function. Suppose that c is a critical point of f, and that f is 
continuous on I and differentiable on I − {c}.  

1. Suppose that there is some δ > 0 such that x ∈ I and c − δ < x < c 

imply f’(x) ≥ 0, and that x ∈ I and c < x < c + δ imply f’(x) ≤ 0. Then 

c is a local maximum of f.  

2. Suppose that there is some δ > 0 such that x ∈ I and c − δ < x < c 

imply f’(x) ≤ 0, and that x ∈ I and c < x < c + δ imply f’(x) ≥ 0. Then c 

is a local minimum of f.  

3. Suppose that there is some δ > 0 such that x ∈ I − {c} and |x − c| 
< δ imply f’(x) > 0, or that x ∈ I − {c} and |x − c| < δ imply f’(x) < 0. 
Then c is not a local extremum of f. 
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Second Derivative Test 
(Theorem 4.5.10) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f: I → ℝ be a 

function. Suppose that f is differentiable, that f’(c) = 0 and that f is 
twice differentiable at c.  

1. If f’’(c) > 0, then c is a local minimum of f.  

2. If f’(c) < 0, then c is a local maximum of f. 

Example 4.5.11 

(1) Let f,g: ℝ → ℝ be defined by f(x) = x3 and g(x) = x4 for all x ∈ ℝ.  

It is straightforward to verify that f’(0) = 0 and g’(0) = 0, and that 
f’’(0) = 0 and g’(0) = 0.  

Because x4 = (x2)2 ≥ 0 for all x ∈ ℝ, then 0 is a local (and also 

global) minimum of g.  

As noted in Example 4.5.8, the number 0 is not a local extremum 
of f.  

 

(2) Let k: ℝ → ℝ be defined by k(x) = |x| for all x ∈ ℝ.  

We saw in Example 4.2.3 (3) that k is not differentiable at 0, and 
hence 0 is a critical point of k.  

We also saw that k’(x) = −1 for all x ∈ (−∞,0), and k’(x) = 1 for all x 
∈ (0, ∞).  

Because k is not differentiable at 0, we cannot apply the Second 
Derivative Test (Theorem 4.5.10) to k at 0.  

However, the First Derivative Test (Theorem 4.5.9) can still be 
applied, and we see that 0 is a local minimum of k, which is just 
what we would expect by looking at the graph of k. 

Local → Global 
(Theorem 4.5.12) 

Let I ⊆ ℝ be an open interval, let c ∈ I and let f: I → ℝ be a 

function. Suppose that f is continuous, and that c is the only 
critical point of f.  

1. If c is a local maximum, then it is a global maximum.  

2. If c is a local minimum, then it is a global minimum. 
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Ch. 4.6 Increasing and Decreasing Functions, Part II: Further Topics 
 

Axiom / Theorem / 
Lemma / Definition 

Description 

Not Differentiable 
(Example 4.6.1) 

Let f: ℝ → ℝ be defined by f(x) = x3 for all x ∈ ℝ.  
Intuitively, we know that the function f is bijective, and hence it 

has an inverse function f−1: ℝ → ℝ, which we write as f−1(x) = √𝑥
3

 
for all x ∈ ℝ.  
Moreover, we know that the graph of f−1 is obtained from the 
graph of f by reflection in the line y = x.  
Because f has a horizontal tangent line at the origin, then the 
graph of f−1 has a vertical tangent line at x = 0, which makes it not 
differentiable at x = 0. 

Bounded Intervals 
(Lemma 4.6.2) 

Let I ⊆ ℝ be a non-degenerate open interval, and let f: I → ℝ be a 
function. Suppose that f is strictly monotone.  

1. The function f: I → f(I) is bijective.  
2. Suppose that f is continuous. Then f(I) is a non-degenerate open 
interval, and one of the following holds:  

a. If the interval f(I) is bounded, then f(I) = (glb f(I),lub f(I)).  
b. If the interval f(I) is bounded above but is not bounded 
below, then f(I) = (−∞,lub f(I)).  
c. If the interval f(I) is bounded below but is not bounded 
above, then f(I) = (glb f(I), ∞).  
d. If the interval f(I) is not bounded above and is not 
bounded below, then f(I) = ℝ. 

Example 4.6.3 

We want to show that the square root function is continuous.  

Let f: (0, ∞) → ℝ be defined by f(x) = x2 for all x ∈ ℝ.  
By Exercise 3.5.6 (1) we see that f is strictly increasing, and by 
Example 3.3.7 (1) we see that f is continuous.  
Exercise 3.5.6 implies that f((0, ∞)) = (0, ∞).  

It then follows from Lemma 4.6.2 (3) that f−1: (0, ∞) → (0, ∞) is 
continuous and strictly increasing.  

By Definition 2.6.10 we see that f−1(x) = √𝑥
2  for all x ∈ (0, ∞).  

The continuity of this function could also be shown directly by an 
ε–δ proof, but Lemma 4.6.2 allows us to avoid that. 

Inverse Derivatives 
(Theorem 4.6.4) 

Let I ⊆ ℝ be a non-degenerate open interval, and let f: I → ℝ be a 
function. Suppose that f is differentiable, and that f’(x) ≠ 0 for all x 
∈ I.  
1. The function f is strictly monotone.  

2. The function f: I → f(I) is bijective.  

3. The function f−1: f(I) → I is differentiable.  
4. The derivative of f−1 is given by 

[𝑓−1]′(𝑥) =
1

𝑓′(𝑓−1(𝑥))
 

for all x ∈ f(I). 
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Secant Line 
(Definition 4.6.5) 

Let I ⊆ ℝ be an open interval, let a,b ∈ I and let f: I → ℝ be a 

function. Suppose that a < b.  
The secant line through (a, f(a)) and (b, f(b)) is the function Sa,b: ℝ 

→ ℝ defined by 

𝑆𝑎,𝑏(𝑥) = 𝑓(𝑎)
𝑏 − 𝑥

𝑏 − 𝑎
+ 𝑓(𝑏)

𝑥 − 𝑎

𝑏 − 𝑎
 

 
for all x ∈ ℝ.  
The slope of the secant line through (a, f(a)) and (b, f(b)), denoted 
Ma,b, is defined by 
 

𝑀𝑎,𝑏 =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
. 

 

Function vs Secant Line 
(Theorem 4.6.6) 

Let I ⊆ ℝ be an open interval, and let f: I → ℝ be a function. The 

following are equivalent.  

a. If a,b ∈ I and a < b, then f(x) ≤ Sa,b(x) for all x ∈ [a,b]  

(Function Lies Below Its Secant Lines).  

b. If a,b,c ∈ I and a < b < c, then Ma,b ≤ Mb,c  

(Function Has Increasing Secant Line Slopes). 

Concave Up 
(Definition 4.6.7) 

Let I ⊆ ℝ be an open interval, and let f: I → ℝ be a function. The 

function f is concave up if either of the two conditions in Theorem 
4.6.6 hold. 

Theorem 4.6.8 

Let I ⊆ ℝ be an open interval, and let f: I → ℝ be a function.  

1. Suppose that f is differentiable. Then the two conditions in 
Theorem 4.6.6 hold if and only if f’ is increasing on I. 

2. Suppose that f is twice differentiable. Then the two conditions in 

Theorem 4.6.6 hold if and only if f’’(x) ≥ 0 for all x ∈ I.  
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Ch. 5.2 The Riemann Integral 
 

Axiom / Theorem / 
Lemma / Definition 

Description 

Definition 5.2.1 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval.  
1. A partition of [a,b] is a set P = {x0, x1 , ..., xn} such that a = x0 < x1 
< ··· < xn = b, for some n ∈ ℕ.  
2. If P = {x0, x1, ..., xn} is a partition of [a,b], the norm (also called 
the mesh) of P, denoted ||P||, is defined by 

||P|| = max{x1 − x0, x2 − x1, ..., xn − xn−1}.  
3. If P = {x0, x1, ..., xn} is a partition of [a,b], a representative set of 
P is a set T = {t1, t2, ..., tn} such that ti ∈ [xi−1, xi] for all i ∈ {1, ..., n}. 

Riemann Sum 
(Definition 5.2.2) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, let f: 

[a,b] → ℝ be a function, let P = {x0, x1, ..., xn} be a partition of [a,b] 
and let T = {t1, t2, ..., tn} be a representative set of P. The Riemann 
sum of f with respect to P and T, denoted S(f,P,T), is defined by 
 

𝑆(𝑓, 𝑃, 𝑇) =∑ 𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1)
𝑛

𝑖=1
. 

 

 
Example 5.2.3 (1) f(x) = x2 

 (2) r(x) = {1 or 0} 

Definition of Integrability 
(ε- δ) 
(Definition 5.2.4) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, let f: 

[a,b] → ℝ be a function and let K ∈ ℝ. The number K is the 

Riemann integral of f, written 

∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = 𝐾, 

if for each ε > 0, there is some δ > 0 such that if P is a partition of 
[a,b] with ||P|| < δ, and if T is a representative set of P, then 
|S(f,P,T) − K| < ε. If the Riemann integral of f exists, we say that f is 
Riemann integrable. 
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Unique K 
(Lemma 5.2.5) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 

let f: [a,b] → ℝ be a function.  

If f is Riemann integrable, then there is a unique K ∈ ℝ such that 

∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = 𝐾. 

Example 5.2.6 

(1) f(x) = c 

(2) g(x) = {7 or 0} 

(3) r(x) = {0 or 1} 

(4) s(x) = {1/q or 0} 

(5) v(x) = {0 or 1} 

Exercise 5.2.1 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 
let ε > 0. Prove that there is a partition R of [a,b] such that ||R|| < 
ε. 
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Ch. 5.3 Elementary Properties of the Reimann Integral 
 

Axiom / Theorem / 
Lemma / Definition 

Description 

Integration: +, -, k 
(Theorem 5.3.1) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, let f,g: 

[a,b] → ℝ be functions and let k ∈ ℝ. Suppose that f and g are 
integrable.  
1. f + g is integrable and 

∫ [𝑓 + 𝑔](𝑥)
𝑏

𝑎

𝑑𝑥 = ∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 + ∫ 𝑔(𝑥)
𝑏

𝑎

𝑑𝑥. 

 
2. f − g is integrable and 

∫ [𝑓 − 𝑔](𝑥)
𝑏

𝑎

𝑑𝑥 = ∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 − ∫ 𝑔(𝑥)
𝑏

𝑎

𝑑𝑥. 

 
3. k·f is integrable and 

∫ [𝑘𝑓](𝑥)
𝑏

𝑎

𝑑𝑥 = 𝑘∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥. 

 

4. ∫ 𝑘
𝑏

𝑎
𝑑𝑥 = 𝑘(𝑏 − 𝑎). 

 

Theorem 5.3.2 

Let [a,b] ⊆ ℝ be a closed bounded interval, and let f,g: [a,b] → ℝ 
be functions. Suppose that f and g are integrable.  

1. If f(x) ≥ 0 for all x ∈ [a,b], then ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 ≥ 0.  

2. If f(x) ≥ g(x) for all x ∈ [a,b], then ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 ≥ ∫ 𝑔(𝑥)

𝑏

𝑎
𝑑𝑥. 

3. Let m,M ∈ ℝ. If m ≤ f(x) for all x ∈ [a,b], then m(b−a) ≤ 

∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥, and if f(x) ≤ M for all x ∈ [a,b], then ∫ 𝑓(𝑥)

𝑏

𝑎
𝑑𝑥 ≤

𝑀(𝑏 − 𝑎).  

Integrable → Bounded 
(Theorem 5.3.3) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 

let f: [a,b] → ℝ be a function. If f is integrable, then f is bounded. 
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Ch. 5.4 Upper Sums and Lower Sums 
 

Axiom / Theorem / 
Lemma / Definition 

Description 

Refinement 
(Definition 5.4.1) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 
let P and Q be partitions of [a,b]. The partition Q is a refinement of 
P if P ⊆ Q. 

Example 5.4.2 
The sets P = {0, ½ , 1}, and Q = {0, ¼, ½, ¾, 1} and ℝ = {0, 1/3, 2/3 , 
1} are partitions of [0,1]. Then Q is a refinement of P, but ℝ is not a 
refinement of P. 

Norm of a Refinement 
(Lemma 5.4.3) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 
let P and Q be partitions of [a,b].  

1. P ∪ Q is a partition of [a,b], and P ∪ Q is a refinement of each 
of P and Q.  
2. If Q is a refinement of P, then ||Q|| ≤ ||P||. 
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Upper/Lower Sums 
(Definition 5.4.4) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, let f: 

[a,b] → ℝ be a function and let P = {x0, x1, ..., xn} be a partition of 

[a,b]. Suppose that f is bounded.  
 
1. For each i ∈ {1, ..., n}, let Mi(f) = lub f([xi−1, xi]) and mi(f) = glb 
f([xi−1, xi]). If it is necessary to indicate the partition being used, we 

will write 𝑀𝑖
𝑃(𝑓)and 𝑚𝑖

𝑃(𝑓).  
 
2. The upper sum of f with respect to P, denoted U(f,P), is defined 
by 

𝑈(𝑓, 𝑃) =∑𝑀𝑖(𝑓)(𝑥𝑖 − 𝑥𝑖−1)

𝑛

𝑖=1

 

 
and the lower sum of f with respect to P, denoted 

𝐿(𝑓, 𝑃) =∑𝑚𝑖(𝑓)(𝑥𝑖 − 𝑥𝑖−1)

𝑛

𝑖=1

 

 
NOTE: An upper sum of a continuous function, f, takes a point ci in 
each subinterval where the maximum value of f is achieved.  
A lower sum takes the minimum value of f for each subinterval. 

 

 
Example 5.4.5 (1) f(x) = x2 

 (2) g(x) = {7 or 0} 

 (3) r(x) = {1 or 0} 
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Lemma 5.4.6 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, let f: 

[a,b] → ℝ be a function and let P be a partition of [a,b]. Suppose 

that f is bounded.  

1. If T is a representative set of P, then L(f,P) ≤ S(f,P,T) ≤ U(f,P).  

2. If ℝ is a refinement of P, then L(f,P) ≤ L(f,ℝ) ≤ U(f,ℝ) ≤ U(f,P).  

3. If Q is a partition of [a,b], then L(f,P) ≤ U(f,Q). 

Integrable Equivalents 
(Theorem 5.4.7) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 

let f: [a,b] → ℝ be a function. Suppose that f is bounded. The 

following are equivalent.  

a. The function f is integrable.  

b. For each ε > 0, there is some δ > 0 such that if P is a 
partition of [a,b] with ||P|| < δ, then U(f,P) − L(f,P) < ε.  

c. For each ε > 0, there is some partition P of [a,b] such 
that U(f,P) − L(f,P) < ε. 

Upper/Lower Integral 
(Definition 5.4.8) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 

let f: [a,b] → ℝ be a function. Suppose that f is bounded.  

The upper integral of f, denoted ∫  
𝑏

𝑎
𝑓(𝑥)𝑑𝑥, is defined by 

∫  
𝑏

𝑎

𝑓(𝑥)𝑑𝑥 = glb{U(f, P) | P is a partition of [a, b]}, 

and the lower integral of f, denoted ∫  
𝑏

𝑎
𝑓(𝑥)𝑑𝑥, is defined by 

∫  
𝑏

𝑎

𝑓(𝑥)𝑑𝑥 = lub{L(f, P) | P is a partition of [a, b]}. 

Lemma 5.4.9 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 

let f: [a,b] → ℝ be a function. Suppose that f is bounded. Then the 

upper integral and lower integral of f always exist, and 

∫  
𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≤ ∫  
𝑏

𝑎

𝑓(𝑥)𝑑𝑥. 

Proper Integral 
(Theorem 5.4.10) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 

let f: [a,b] → ℝ be a function. Suppose that f is bounded. Then f is 

integrable if and only if 

∫  
𝑏

𝑎

𝑓(𝑥)𝑑𝑥 = ∫  
𝑏

𝑎

𝑓(𝑥)𝑑𝑥, 

and if this equality holds then 

∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = ∫  
𝑏

𝑎

𝑓(𝑥)𝑑𝑥 = ∫  
𝑏

𝑎

𝑓(𝑥)𝑑𝑥. 

Continuous → Integrable 
(Theorem 5.4.11) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 

let f: [a,b] → ℝ be a function. If f is continuous, then f is 

integrable. 
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Ch. 5.5 Further Properties of the Reimann Integral 
 

Axiom / Theorem / 
Lemma / Definition 

Description 

g ◦ f is Integrable 
(Theorem 5.5.1) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, let D 

⊆ ℝ be a set and let f: [a,b] → ℝ and g: D → ℝ be functions. 
Suppose that f is integrable, and that f([a,b]) ⊆ D.  
1. If g is uniformly continuous and bounded, then g ◦ f is 
integrable.  
2. If D is a non-degenerate closed bounded interval and g is 
continuous, then g ◦ f is integrable. 

Example 5.5.2 

Let f,g: [0,1] → ℝ be defined by f(x) = 1 for all x ∈ [0,1], and g(x) = 
(1, if x = 0 x, if x ∈ (0,1]. Then (f/g)(x) = (1, if x = 0, 1/x, if x ∈ (0,1].  
 
We know by Example 5.2.6 (1) that f is integrable. The function g is 
also integrable, as can be seen by combining Exercise 5.2.6 and 
Exercise 5.3.3 (3). However, even though g(x) ≠ 0 for all x ∈ [0,1], 
the function f g is not integrable, because integrable functions are 
bounded by Theorem 5.3.3, and yet f g is not bounded, a fact that 
is evident by looking at the graph of f g, and is proved in Example 
3.2.6. 

Definition 5.5.3 
Let A ⊆ ℝ be a set, and let f: A → ℝ be a function. The function f is 
bounded away from zero if there is some P > 0 such that |f(x)| ≥ P 
for all x ∈ A. 

What is Integrable 
(Theorem 5.5.4) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 

let f,g: [a,b] → ℝ be functions. Suppose that f and g are integrable. 
1. fn is integrable for all n ∈ ℕ.  
2. fg is integrable.  
3. If g is bounded away from zero, then f/g is integrable. 

Absolute Value of Integral 
(Theorem 5.5.5) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 

let f: [a,b] → ℝ be a function. If f is integrable, then |f| is 

integrable and 

|∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥| ≤ ∫ |𝑓(𝑥)|
𝑏

𝑎

𝑑𝑥 

 

Theorem 5.5.6 
Let D ⊆ C ⊆ ℝ be non-degenerate closed bounded intervals, and 

let f: C → ℝ be a function. If f is integrable, then f|D is integrable. 

Intermediate Bound 
(Theorem 5.5.7) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, let c ∈ 

(a,b) and let f: [a,b] → ℝ be a function.  

1. f is integrable if and only if f|[a,c] and f|[c, b] are integrable.  

2. If f is integrable, then 

 

∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = ∫ 𝑓(𝑥)
𝑐

𝑎

𝑑𝑥 + ∫ 𝑓(𝑥)
𝑏

𝑐

𝑑𝑥 
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Swap Bounds / Same 
Bounds 
(Definition 5.5.8) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 

let f: [a,b] → ℝ be a function. Suppose that f is integrable.  

Let ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 be defined by 

 

∫ 𝑓(𝑥)
𝑎

𝑏

𝑑𝑥 = −∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥, 

 

and let ∫ 𝑓(𝑥)
𝑎

𝑎
𝑑𝑥 be defined by 

 

∫ 𝑓(𝑥)
𝑎

𝑎

𝑑𝑥 = 0 

 

Split Bounds of Integration 
(Corollary 5.5.9) 

Let C ⊆ ℝ be a closed bounded interval, and let f: C → ℝ be a 

function. Let a,b, c ∈ C. If f is integrable, then 

 

∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = ∫ 𝑓(𝑥)
𝑐

𝑎

𝑑𝑥 + ∫ 𝑓(𝑥)
𝑏

𝑐

𝑑𝑥 
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Ch. 5.6 Fundamental Theorem of Calculus 
 

Axiom / Theorem / 
Lemma / Definition 

Description 

Example 5.6.1 

(1) Let f: [0,2] → ℝ be defined by f(x) = x for all x ∈ [0,2]. Let F: 

[0,2] → ℝ be defined by  

𝐹(𝑥) = ∫ 𝑓(𝑡)
𝑥

1

𝑑𝑡 

 

 
(2) Let h: [0,2] → ℝ be defined by h(x) = (1, if x ∈ [0,1] 2, if x ∈ 
(1,2].  

Fundamental Theorem of 
Calculus Version I 
(Theorem 5.6.2) 

Let I ⊆ ℝ be a non-degenerate interval, let a ∈ I and let f: I → ℝ be 
a function. Suppose that f|C is integrable for every non-degenerate 

closed bounded interval C ⊆ I. Let F: I → ℝ be defined by 
 

𝐹(𝑥) = ∫ 𝑓(𝑡)
𝑥

𝑎

𝑑𝑡 

for all x ∈ I.  
Let c ∈ I.  
If f is continuous at c, then F is differentiable at c and F’(c) = f(c).  
If f is continuous, then F is differentiable and F’ = f. 

Continuous → 
Antiderivative 
(Corollary 5.6.3) 

Let I ⊆ ℝ be a non-degenerate interval, and let f: I → ℝ be a 
function.  
If f is continuous, then f has an antiderivative. 

Fundamental Theorem of 
Calculus Version II 
(Theorem 5.6.4) 

Let [a,b] ⊆ ℝ be a non-degenerate closed bounded interval, and 

let f: [a,b] → ℝ be a function. Suppose that f is integrable and f has 

an antiderivative. If F: [a,b] → ℝ is an antiderivative of f, then 

 

∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎) 

 

Example 5.6.5 (1) Let f: ℝ → ℝ be defined by f(x) = (x2 sin 1/x2, if x ≠ 0 0, if x = 0.  

 
(2) Let h: [0,2] → ℝ be defined by h(x) = (1, if x ∈ [0,1], 2, if x ∈ 

(1,2]. 

Example 5.6.6 (1) Let g: [0,2] → ℝ be defined by g(x) = x2 for all x ∈ [0,2]. 

 (2) ∫
1

𝑥2
1

−1
𝑑𝑥 
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