

Harold's Center of Mass

Cheat Sheet

14 January 2026

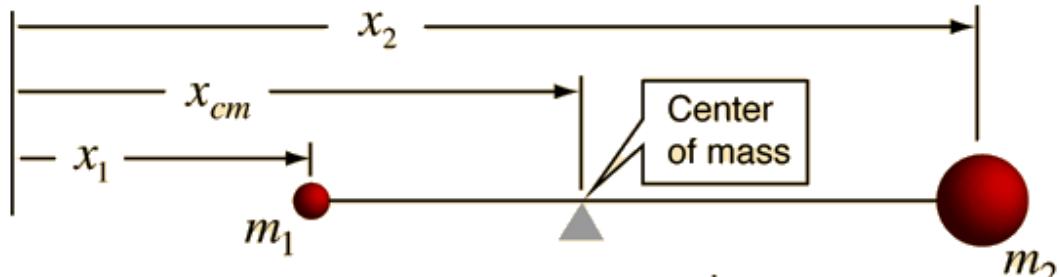
Center of Mass Terms

Term	Description	Units
\bar{x} (\bar{x}, \bar{y}) $(\bar{x}, \bar{y}, \bar{z})$	Center of Mass (CoM). The coordinates (point) where the object is perfectly balanced. (Centroid)	m or ft
\bar{x}	Center of Mass along the x-axis. Same as x_{cm} .	m or ft
\bar{y}	Center of Mass along the y-axis.	m or ft
\bar{z}	Center of Mass along the z-axis.	m or ft
M	Total mass. How heavy the object is. Is equal to its area or volume if uniform density. (similar to Weight)	kg or lb
M_x and M_y	A <u>moment</u> is the line or axis on which the object can spin perfectly balanced.	kg or lb
M_x	Moment about the x-axis	kg or lb
M_y	Moment about the y-axis	kg or lb
ρ	Greek symbol rho for density or mass/volume or mass/area.	$\rho = \frac{kg}{m^3}$ or $\frac{lb}{ft^3}$
A	Area of lamina or plate	m^2 or ft^2
V	Volume of a body or solid	m^3 or ft^3

Center of Mass: Discrete or for Particles

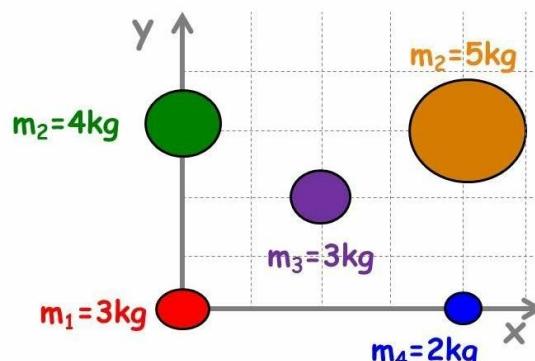
Term	1D	2D	3D
\bar{x}	$\bar{x} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$	$\bar{x} = \frac{M_y}{M}$	$\bar{x} = \frac{1}{M} \sum_{i=1}^N m_i x_i$
\bar{y}	$\bar{y} = \frac{m_1 y_1 + m_2 y_2}{m_1 + m_2}$	$\bar{y} = \frac{M_x}{M}$	$\bar{y} = \frac{1}{M} \sum_{i=1}^N m_i y_i$
\bar{z}	$\bar{z} = \frac{m_1 z_1 + m_2 z_2}{m_1 + m_2}$	NA	$\bar{z} = \frac{1}{M} \sum_{i=1}^N m_i z_i$
M	$M = \sum_{i=1}^N m_i = \int dm$		
M_x	$M_x = \sum_{i=1}^N m_i y_i = \int y dm$		
M_y	$M_y = \sum_{i=1}^N m_i x_i = \int x dm$		

1D



$$\text{For two masses: } x_{cm} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$

2D

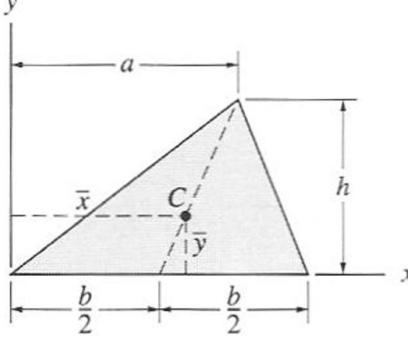
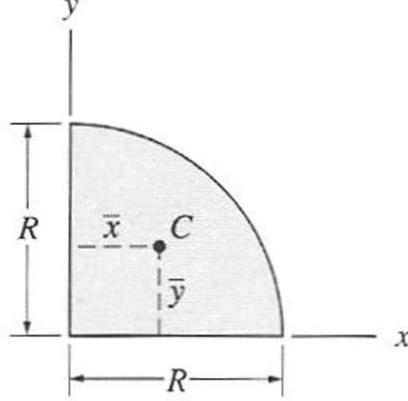
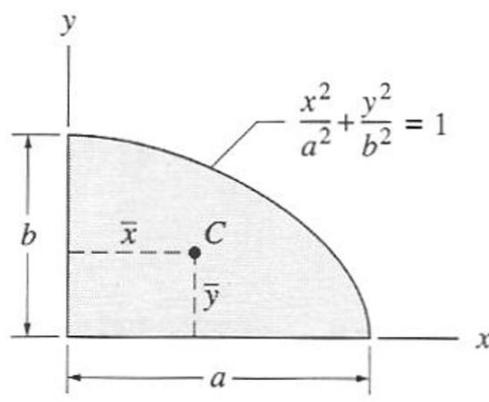
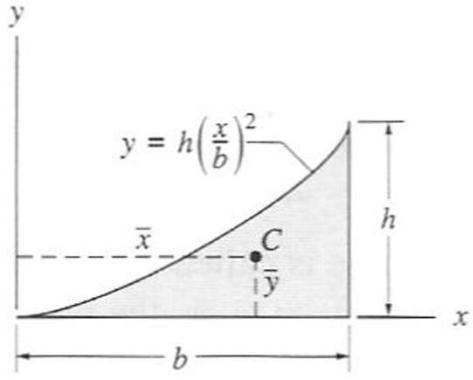


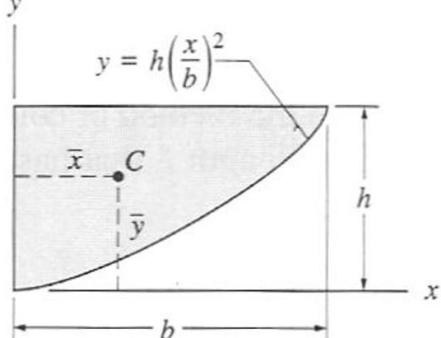
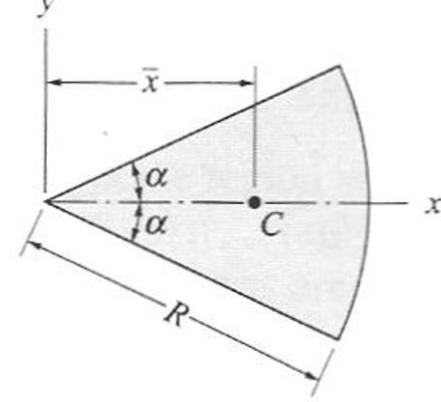
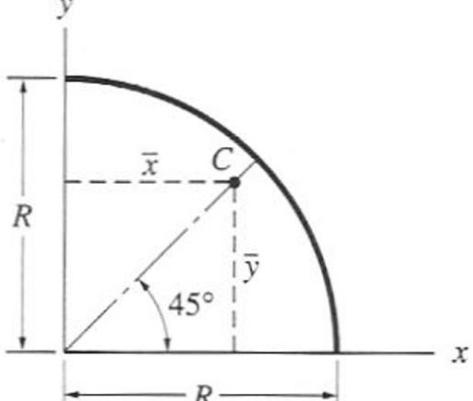
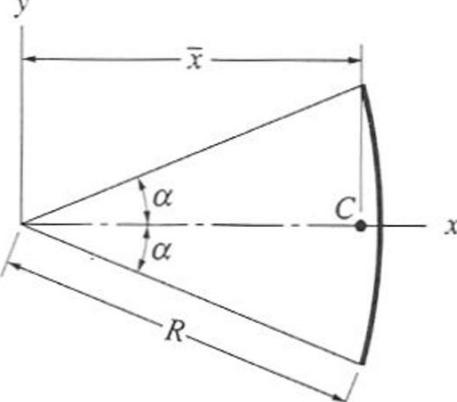
TIP: Pick the xy-axis origin to be at the corner of a right angle (e.g., red mass m_1).

Center of Mass: Continuous

Term	2D	3D
\bar{x}	$\bar{x} = \frac{M_y}{M}$	$\bar{x} = \frac{1}{M} \int_0^M x \, dm = \frac{1}{M} \int_0^M x \frac{M}{L} dx = \frac{M_{yz}}{M}$
\bar{y}	$\bar{y} = \frac{M_x}{M}$	$\bar{y} = \frac{1}{M} \int_0^M y \, dm = \frac{M_{xz}}{M}$
\bar{z}	NA	$\bar{z} = \frac{1}{M} \int_0^M z \, dm = \frac{M_{xy}}{M}$ $\bar{z} = \frac{1}{V} \int_{z_{min}}^{z_{max}} z \, dV$
M	$M = \rho \text{ (Area)}$ $M = \rho \int_a^b f(x) \, dx$ $M = \iint_R dm = \iint_R \rho(x, y) \, dA$ $dm = \rho(x, y) \, dy \, dx$	$M = \rho \text{ (Volume)}$ $M = \iiint_Q dm = \iiint_Q \rho(x, y, z) \, dV$ $dm = \rho(x, y, z) \, dz \, dy \, dx$
M_x	$M_x = \rho \iint_R y \, dA = \rho \int_a^b \frac{1}{2}([f(x)]^2) \, dx$	$M_{xy} = \iiint_Q z \rho(x, y, z) \, dV$
M_y	$M_y = \rho \iint_R x \, dA = \rho \int_a^b x f(x) \, dx$	$M_{yz} = \iiint_Q x \rho(x, y, z) \, dV$
M_z	NA	$M_{xz} = \iiint_Q y \rho(x, y, z) \, dV$
$x_{cm} = \frac{\int_0^L x \frac{M}{L} dx}{M} = \frac{1}{L} \frac{x^2}{2} \Big _{x=0}^{x=L} = \frac{L}{2}$		

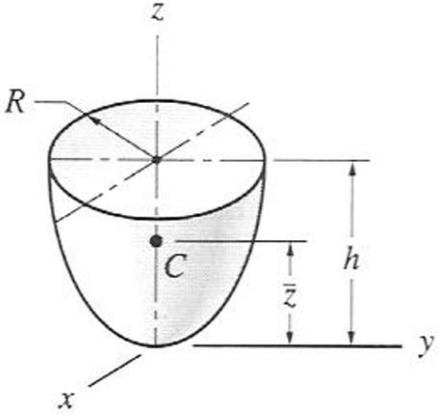
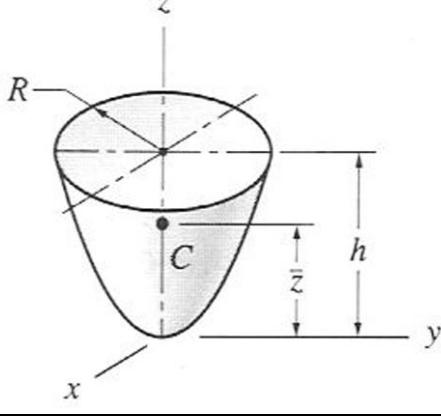
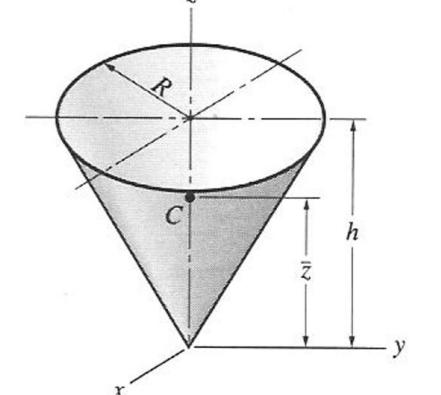
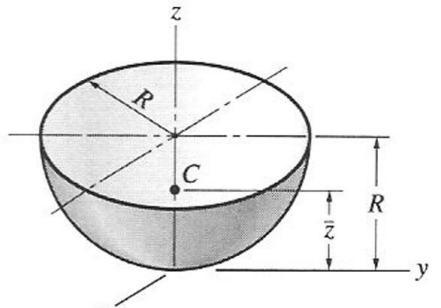
Center of Mass of Common 2D Plane Areas and Curves

Shape	Diagram	Formulas
Triangle		$\bar{x} = \frac{1}{3}(a + b)$ $\bar{y} = \frac{1}{3}h$ $A = \frac{1}{2}bh$
Quarter Circle		$\bar{x} = \frac{4}{3\pi}R$ $\bar{y} = \frac{4}{3\pi}R$ $A = \frac{1}{4}\pi R^2$
Quarter Ellipse		$\bar{x} = \frac{4}{3\pi}a$ $\bar{y} = \frac{4}{3\pi}b$ $A = \frac{1}{4}\pi ab$
Half Parabolic Complement		$\bar{x} = \frac{3}{4}b$ $\bar{y} = \frac{3}{10}h$ $A = \frac{1}{3}bh$

Half Parabola		$\bar{x} = \frac{3}{8}b$ $\bar{y} = \frac{3}{5}h$ $A = \frac{2}{3}bh$
Circular Sector		$\bar{x} = \frac{2R \sin \alpha}{3\alpha}$ $A = \alpha R^2$
Quarter Circle Arc		$\bar{x} = \frac{2}{\pi}R$ $\bar{y} = \frac{2}{\pi}R$ $L = \frac{1}{2}\pi R$
Circular Arc		$\bar{x} = \frac{R \sin \alpha}{\alpha}$ $L = \alpha R$
Note: All formulas shown assume objects of uniform mass density.		

Center of Mass of Common 3D Volumes and Surfaces

Shape	Diagram	Formulas
Right Tetrahedron	<p>A 3D diagram of a right tetrahedron. The vertical axis is labeled z. The horizontal axes are labeled x and y. The base is a right-angled triangle with vertices at $(0,0,0)$, $(a,0,0)$, and $(0,b,0)$. The apex is at $(0,0,h)$. The center of mass C is marked at $(\bar{x}, \bar{y}, \bar{z}) = (a/4, b/4, h/4)$.</p>	$\bar{x} = \frac{1}{4}a$ $\bar{y} = \frac{1}{4}b$ $\bar{z} = \frac{1}{4}h$ $V = \frac{1}{6}abh$
Pyramid	<p>A 3D diagram of a pyramid. The vertical axis is labeled z. The horizontal axes are labeled x and y. The base is a rectangle of side lengths a and b. The apex is at $(0,0,h)$. The center of mass C is marked at $(\bar{x}, \bar{y}, \bar{z}) = (a/4, b/4, h/4)$.</p>	$\bar{z} = \frac{3}{4}h$ $V = \frac{1}{3}abh$
Cone	<p>A 3D diagram of a cone. The vertical axis is labeled z. The horizontal axes are labeled x and y. The base is a circle of radius R. The apex is at $(0,0,h)$. The center of mass C is marked at $(\bar{x}, \bar{y}, \bar{z}) = (0, 0, 3h/4)$.</p>	$\bar{z} = \frac{3}{4}h$ $V = \frac{1}{3}\pi R^2 h$
Hemisphere	<p>A 3D diagram of a hemisphere. The vertical axis is labeled z. The horizontal axes are labeled x and y. The base is a circle of radius R. The center of mass C is marked at $(\bar{x}, \bar{y}, \bar{z}) = (0, 0, 5R/8)$.</p>	$\bar{z} = \frac{5}{8}R$ $V = \frac{2}{3}\pi R^3$

Semi-Ellipsoid of Revolution		$\bar{z} = \frac{5}{8}R$ $V = \frac{2}{3}\pi R^2 h$
Paraboloid of Revolution		$\bar{z} = \frac{2}{3}h$ $V = \frac{1}{2}\pi R^2 h$
Conical Surface		$\bar{z} = \frac{2}{3}h$ $A = \pi R \sqrt{R^2 + h^2}$
Hemispherical Surface		$\bar{z} = \frac{1}{2}R$ $A = 2\pi R^2$

Note: All formulas shown assume objects of uniform mass density.

Sources

- Mechanics Map – Open Text Project (2026). Center of Mass and Mass Moments of Inertia for Homogeneous Bodies.
<https://mechanicsmap.psu.edu/websites/centroidtables/centroids3D/centroids3D.html>
- University of Utah, Dept. of Mechanical Engineering (2026). ME 1300 - Statics & Strength of Materials, Selected Centroid and Moment of Inertia Shapes.
<https://my.mech.utah.edu/~me1300/Selected.pdf>

See Also

- [Harold's Physics Center of Mass Cheat Sheet](#)
- [Harold's Physics Moment of Inertia Cheat Sheet](#)