Cheat Sheet

21 May 2023

Terminology

Arcs and Angles in a Circle

Configuration	Rule / Formula	Diagram
Central Angle (Angle at Center)	$\begin{gathered} \text { Equal to arc } \\ \theta=x^{\circ} \\ m \angle A B C=m \widehat{A C} \end{gathered}$	
Inscribed Angle (Angle in Same Segment)	Half the arc $\theta=\frac{1}{2} x^{\circ}$	
Inscribed Quadrilateral (Opposite Angles of Cyclic Quadrilateral)	$\begin{aligned} & m \angle A+m \angle C=180^{\circ} \\ & m \angle B+m \angle D=180^{\circ} \end{aligned}$ The opposite angles of cyclic quadrilaterals are supplementary (180°).	
Radius 1 Tangent	The angle between the radius and a tangent is 90°.	

Two Chords (Internal Angle)	Half the sum $\theta=\frac{1}{2}\left(x^{\circ}+y^{\circ}\right)$	
Two Secants (External Angle)	Half the difference $\begin{gathered} \theta=\frac{1}{2}\left(x^{\circ}-y^{\circ}\right) \\ m \angle D= \\ \frac{1}{2}(m \overparen{E F}-m \widehat{G H}) \end{gathered}$	
Secant \& Tangent (External Angle)	$\begin{gathered} m \angle Q= \\ \frac{1}{2}(m \widehat{R S}-m \widehat{R T}) \end{gathered}$	
Two Tangents (External Angle)	$\begin{gathered} m \angle L= \\ \frac{1}{2}(m \widehat{M P N}-m \widehat{M N}) \end{gathered}$	

Angle at Center	$2 x^{\circ} v s . x^{\circ}$ The angle at the center is twice the angle standing on the same chord/arc.	
Angles Inscribed in a Semi-Circle	Right Angles (90 ${ }^{\circ}$) Angles on a semi-circle are 90°.	
Angles Inscribed in a Circle	Angles from two points on a circle are equal.	
Same Segment Theorem (Two Inscribed Angles)	$\begin{aligned} & x^{\circ}=x^{\circ} \\ & y^{\circ}=y^{\circ} \end{aligned}$ Angles on the same arc are equal.	
Alternate Segment Theorem	$\begin{aligned} & x^{\circ}=x^{\circ} \\ & y^{\circ}=y^{\circ} \end{aligned}$ The angle between a chord and a tangent is equal to the angle in the alternate segment.	

Tangent and Intersected Chord Theorem	$\begin{aligned} & m \angle 1=\frac{1}{2}(m \widehat{A C}) \\ & m \angle 2=\frac{1}{2}(m \widehat{A D C}) \end{aligned}$ If a tangent and a chord intersect at a point on a circle, then the measure of each angle formed is one-half the measure of its intercepted arc.	
Supplimentary Angles	$m \angle 1+m \angle 2=180^{\circ}$	
Interior Angles	$\theta=\frac{360^{\circ}}{n}$ Sum of interior angles of a circle is always 360°.	

Chords and Secants in a Circle

| Configuration | Rule / Formula
 renter of a circle to
 the center of a chord
 is perpendicular to the
 chord.
 of Chord Passes Through
 Center | A perpendicular line
 from the chord to the
 center bisects the
 chord. |
| :---: | :---: | :---: | :---: |
| Equal Chords Equidistant | | |
| from Center | | |
| Equal chords are | | |
| equal distance from | | |
| the center. | | |
| Chords that are equal | | |
| distance from the | | |
| center are equal. | | |

| Intersecting Chords |
| :--- | :---: |
| Theorem |

Area and Perimeter

	$V=\frac{4}{3} \pi r^{3}$	

Sources:

Kevin's Online Maths, Rules of Circle Geometry
http://kelvinsonlinemaths.blogspot.com/2011/03/rules-of-circle-geometry.html

Geometry R, Unit 13 - Circles, Mr. Rosss @ Grady High
https://mrrossatgradyhigh.files.wordpress.com/2022/08/unit-13-notes-circles 2018.pdf

Pinterest, Tangent \& Secant Lines, Sandy Lakey
https://www.pinterest.com.mx/pin/817403401103649163/

Online Math Learning.com, Angles and Intercepted Arcs
https://www.onlinemathlearning.com/arc-angles.html
ck-12, 9.7 Segments of Secants and Tangents
https://www.ck12.org/book/ck-12-foundation-and-leadership-public-schools-college-access-reader\%3Ageometry/section/9.7/
ck-12, Angles Outside a Circle
https://www.ck12.org/c/geometry/angles-outside-a-circle/lesson/Angles-Outside-a-Circle-BSC-GEOM/

