Harold's Cryptology Cheat Sheet

17 December 2022

Definitions

Term	Definition						
Cryptology	The study of cryptography and cryptoanalysis						
Cryptography Methods of encipherment (secret techniques)							
Cryptoanalysis Methods of decipherment (code breaking)							
Plain	Plain text message to be encrypted						
Cipher	Encrypted text message to be decrypted						
Кеу	Secret string or set of numbers used to encrypt plain text						
Stegenography	Information hiding in files, like JPG images						

Text to Numbers Encoding

Letter	Number	Letter	Number
Α	00	N	13
В	01	0	14
С	02	Р	15
D	03	q	16
E	04	R	17
F	05	S	18
G	06	т	19
н	07	U	20
I	08	v	21
J	09	w	22
К	10	х	23
L	11	Y	24
М	12	Z	25
		<space></space>	26

Cipher Methods

Method	Concept	Example	How						
Shift	m = plain text mes c = cipher text e.g., ("A" = 0, "B" $0 \le a$ gcd $(a, n) =$	ssage = 1,) , b < n 1 (coprime)	Modular Arithmetic for all three (see Harold's Modular Arithmetic Cheat Sheet)						
	Multiply and shift, then wrap	Affine Ciphers	$c = (am + b) MOD n$ $m = (a^{-1}(c - b)) MOD n$ To find a^{-1} , solve for r : $(c - b) \cdot r \equiv 1 \pmod{n}$ Since $r = a^{-1}$, then $a^{-1}am = m \pmod{n}$						
	Shift and wrap	Caesar Cipher	c = (m + b) MOD n m = (c - b) MOD n Same as Affine with a = 1.						
	Multiply and wrap	Decimation Cipher	c = (am) MOD n Same as Affine with $b = 0$ and "A" = "A".						
Substitution	Replacement	Mixed Alphabet with Key Words	Key: Unique letters of the key word in order, without repetitions Plain: A B C X Y Z Cipher: <key> followed by remaining letters of the alphabet, without repetitions</key>						
	(simple)	Keyword Columnar Transposition Substitution	 Row 1: Key word unique chars (# cols) Rows 2-n: Remaining unique chars in rows of a fixed column table Add a padding character as needed Cipher text is simply reading columns top down in alphabetical order 						
Transposition	Rearranged	Columnar Transposition	 Agree upon number of columns Rows 1-n: Use clear text to write out rows of a fixed column table Add a padding character as needed Cipher text is simply reading columns top down in order left to right 						

Spreadsheet Example – Caesar Cipher

Functio	n I	Des	escription						Excel Formula							
_			1				1		1	1		-	1			
	Operation		Α	В	С	D	Ε	F	G	Н	I.	J				
	Plain Text	1	S	К	Υ	Ι	S	С	L	Е	Α	R				
	Plain Text as #	2	18	10	24	8	18	2	11	4	0	17				
	Cipher Text as #	3	25	27	5	15	25	9	18	11	7	24				
	Cipher Text	4	Ζ	R	F	Р	Z	J	S	L	Н	Y				
CODE("A")	Converts an A	SCIL	chara	cter in	ito a i	numb	er	A2=CODE(A1) - CODE("A")								
MOD(n, m)	Adds a fixed of then mods it l	Adds a fixed offset to each number (n) then mods it by m							A3=MOD(A2 + 7, 26)							
CHAR(65) Converts a number into an ASCII character A4=CHAR (A3 + CODI									ODE ("A"))						
								A4=CHAR (MOD (CODE (A1) -								
Combined	All three func	tions	com	bined	into c	one		CODE("A") + 7, 26) +								
										CODE ("A"))						

Frequency Analysis

L	.an	gua	age	9	Combos Letter Frequency																		
7.99 A	6 1.4% B	2.7% C	4.1% D	12.2% E	2.1% F	1.9% G	5.9% H	6.8% I	0.2% J	0.8% K	3.9% L	2.3% M	6.5% 7 N	.2% 1. O	3% 0.1 > C	% 5.8% ≥ R	6.1% S	8.8% T	2.7% U	1.0% : V	2.3% 0.24 W X	% 1.9% Y	1.0% Z
										ETC	DAN	IS	RHC	UL									
										EΤA	AOI	NS	HRD	LC	UMW	FG	YPB	VK	XJÇ	2Z (Texts)	
					Lattara					ESI	IAR	NT	OLC	DU	GPM	HB	YFV	KW	ZXJ	rq (Dictic	nari	es)
				Letters					ETAON RISHD LFCMU GYPWB VKJXZQ (40K sample)							le)							
									ETAOI NSRHD LUCMF YWGPB VKXQJZ														
											AOI	NS	RHL	DC	UMF	PGI	WΥΒ	VK	XJÇ	ŊΖ			
Eng	glish									ΤH	ΗE	AN	RE	ER	IN	ON	AT	ND	S1	'ES	S EN	OF	ΤE
				Diagrams					ΕD	OR	ΊΊ	Η⊥	AS	ΊO									
									тυ		TN	ΓN	NTTT	DT	гD	71 NT	тт	гc	' ON	יחיגו	сг	ND	
										OR	AR	ΔT.	TE	CO	DE	ΤO	RA	тт Ет	EE EE	о ог о т о	N AI SA	EM	RO
					D	oubl	ele	otter	~	LL	EE	SS	00	TT	FF	RR	NN	PP	CC	, <u> </u>			110
						Double Letters					E A	ND	THA	ΕN	ΓI	NG	ION	TI	O E	'OR	NDE	HAS	5
					Tri	grar	ns		NCE	ΕE	DT	TIS	OF	ΓS	тн і	MEN							
Fre	nch					Le	tter	S		ESA	AIT	NR	UOL	DC	MPV	ÉQI	FBG	HJ	ÀXZ	C ÈÉ	ÈYÇK	ÛÙ	ÂW
Ital	ian					Le	tter	S		EA	EON	LR	TSC	DP	UMV	GZI	FBH	ÀQ	ÈÚW	ΙÍΥ	JKX	ÒÉ(ÇÆ
Ge	rmar	ì				Le	tter	S		ENS	SRI	AT	DHU	LG	СОМ	WB	FKZ	ÜÖ	ßJY	X X)ÀÈÚ	ÍÒI	<[+]
Spa	nish					Le	tter	s		EAC	DSR	NI	DLC	TU	MPB	GY	ÍVQ	ÓН	FZJ	ΓÉŹ	ÁÑXÚ	ÜWI	K

RSA Algorithm

Term	Definition									
RSA	Public key cryptosystem developed by I	Rivest, Adelman, and Shamir in 1978.								
Key Prep	 Bob selects two large prime numbers, p and q. Bob computes N = pq and φ = (p-1) (q-1) Bob finds an integer e such that gcd (e, φ) = 1. Bob computes the multiplicative inverse of e mod φ: an integer d such that (ed mod φ) = 1. Public (encryption) key: N and e. Private (decryption) key: d. Bob selects two primes: 									
Example	1. Bod selects two primes: p = 31 q = 59 2. Compute: $N = p \cdot q = 31 \cdot 59 = 1829$ $\phi = (p - 1) \cdot (q - 1) = 30 \cdot 58 = 1740$ 3. Find integer e such that gcd (e, ϕ) = 1 Guess e = 859 and check: gcd (859, 1740) = 1 If the first guess is not relatively prime to ϕ , try another. 4. Using Euclid's algorithm, find A and B such that A $\cdot 859 + B \cdot 1740 = 1$ $79 \cdot 859 + (-39) \cdot 1740 = 1$ $79 \cdot 859 = 1 \mod 1740$ d = 79 is the inverse of 859 mod 1740 5. Public key: (e, N) e = 859 N = 1829 6. Private key: (d, N)									
Encryption	$c = m^e \mod N$	Public key: 💽🖚								
Decryption	$m = c^d \mod N$ Private key:									
Number Theory Fact	Let p and q be prime numbers and pq = Suppose that $m \in \mathbb{Z}_N$ and gcd (m, N) = 1 Then $m^{(p-1)(q-1)} \mod N = 1$.	N.								
Theorem: Validity of the RSA Cryptosystem	If $m \in \mathbf{Z}_N$ and gcd (m, N) = 1, then RSA encryption and decryption applied to m always yield m as the unique result.									

Sources:

- <u>SNHU MAT 230</u> Discrete Mathematics, zyBooks.
- <u>SNHU MAT 260</u> Cryptology, Invitation to Cryptology, 1st Edition, Thomas Barr, 2001.