Harold's Cryptology Cheat Sheet

17 December 2022

Definitions

Term	
Cryptology	The study of cryptography and cryptoanalysis
Cryptography	Methods of encipherment (secret techniques)
Cryptoanalysis	Methods of decipherment (code breaking)
Plain	Plain text message to be encrypted
Cipher	Encrypted text message to be decrypted
Key	Secret string or set of numbers used to encrypt plain text
Stegenography	Information hiding in files, like JPG images

Text to Numbers Encoding

Letter	Number	Letter	Number
\mathbf{A}	00	\mathbf{N}	13
\mathbf{B}	01	\mathbf{O}	14
\mathbf{C}	02	\mathbf{P}	15
\mathbf{D}	03	\mathbf{Q}	16
\mathbf{E}	04	\mathbf{R}	17
\mathbf{F}	05	\mathbf{S}	18
\mathbf{G}	06	\mathbf{T}	19
\mathbf{H}	07	\mathbf{U}	20
\mathbf{I}	08	\mathbf{V}	21
\mathbf{J}	09	\mathbf{W}	22
\mathbf{K}	10	\mathbf{X}	23
\mathbf{L}	11	\mathbf{Y}	24
\mathbf{M}	12	\mathbf{Z}	25
		<space>	26

Cipher Methods

Method	Concept	Example	How

Spreadsheet Example - Caesar Cipher

Function Description Excel Formula

Operation		A	B	C	\mathbf{D}	\mathbf{E}	F	\mathbf{G}	\mathbf{H}	\mathbf{I}	J
Plain Text	$\mathbf{1}$	S	K	Y	I	S	C	L	E	A	R
Plain Text as \#	$\mathbf{2}$	18	10	24	8	18	2	11	4	0	17
Cipher Text as \#	$\mathbf{3}$	25	27	5	15	25	9	18	11	7	24
Cipher Text	$\mathbf{4}$	Z	R	F	P	Z	J	S	L	H	Y

CODE("A")	Converts an ASCII character into a number	A2=CODE (A1) - CODE ("A")
$\operatorname{MOD}(\mathrm{n}, \mathrm{m})$	Adds a fixed offset to each number (n) then mods it by m	A3=MOD (A2 + 7, 26)
CHAR(65)	Converts a number into an ASCII character	A4 $=\operatorname{CHAR}\left(\mathrm{A} 3+\operatorname{CODE}\right.$ (${ }^{\text {a }}$ "))
Combined	All three functions combined into one	```A4=CHAR (MOD (CODE (A1) - CODE("A") + 7, 26) + CODE("A"))```

Frequency Analysis

RSA Algorithm

Term	Definition
RSA	Public key cryptosystem developed by Rivest, Adelman, and Shamir in 1978.
Key Prep	1. Bob selects two large prime numbers, p and q. 2. Bob computes $\mathrm{N}=\mathrm{pq}$ and $\phi=(\mathrm{p}-1)(\mathrm{q}-1)$ 3. Bob finds an integer e such that $\operatorname{gcd}(e, \phi)=1$. 4. Bob computes the multiplicative inverse of $e \bmod \phi:$ an integer d such that $(e d \bmod \phi)=1$. 5. Public (encryption) key: N and e. 6. Private (decryption) key: d.
Example	1. Bob selects two primes: $\begin{aligned} & p=31 \\ & q=59 \end{aligned}$ 2. Compute: $\begin{aligned} & N=p \cdot q=31 \cdot 59=1829 \\ & \phi=(p-1) \cdot(q-1)=30 \cdot 58=1740 \end{aligned}$ 3. Find integer e such that gcd $(\mathrm{e}, \phi)=1$ Guess e $=859$ and check: $\operatorname{gcd}(859,1740)=1$ If the first guess is not relatively prime to ϕ, try another. 4. Using Euclid's algorithm, find A and B such that A $859+B \cdot 1740=1$ $\begin{aligned} & 79 \cdot 859+(-39) \cdot 1740=1 \\ & 79 \cdot 859=1 \bmod 1740 \\ & d=79 \text { is the inverse of } 859 \bmod 1740 \end{aligned}$ 5. Public key: (e, N) $\begin{aligned} & e=859 \\ & N=1829 \end{aligned}$ 6. Private key: (d, N) $\begin{aligned} & d=79 \\ & N=1829 \end{aligned}$
Encryption	c $=m^{e} \bmod N \times$
Decryption	$m=c^{d} \bmod N$ Private key:
Number Theory Fact	Let p and q be prime numbers and $\mathrm{pq}=\mathrm{N}$. Suppose that $\mathrm{m} \in \mathbf{Z}_{\mathrm{N}}$ and $\operatorname{gcd}(\mathrm{m}, \mathrm{N})=1$. Then $\mathrm{m}^{(p-1)(q-1)} \bmod \mathrm{N}=1$.
Theorem: Validity of the RSA Cryptosystem	If $m \in Z_{N}$ and $g c d(m, N)=1$, then RSA encryption and decryption applied to m always yield m as the unique result.

Sources:

- SNHU MAT 230 - Discrete Mathematics, zyBooks.
- SNHU MAT 260 - Cryptology, Invitation to Cryptology, $1^{\text {st }}$ Edition, Thomas Barr, 2001.

