Harold's AP Calculus Notes Cheat Sheet

4 February 2024

Limits

Definition of Limit

Let f be a function defined on an open interval containing c and let L be a real number. The statement:

$$\lim_{x \to c} f(x) = L$$

means that for each $\epsilon>0$ there exists a $\delta>0$ such that

if
$$|x - c| < \delta$$
,
then $|f(x) - L| < \epsilon$

Tip:

Direct substitution: Plug in f(c) and see if it provides a legal answer. If so then L = f(c).

The Existence of a Limit

The limit of f(x) as x approaches c is L if and only if:

$$\lim_{x \to c^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to c^{+}} f(x) = L$$

Definition of Continuity

A function **f** is continuous at c if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|x - c| < \delta$ and $|f(x) - f(c)| < \varepsilon$.

Tip:

Rearrange |f(x) - f(c)| to have |(x - c)| as a factor. Since $|x - c| < \delta$ we can find an equation that relates both δ and ε together.

Prove that $f(x) = x^2 - 1$ is a continuous function.

$$|f(x) - f(c)|$$

$$= |(x^{2} - 1) - (c^{2} - 1)|$$

$$= |x^{2} - 1 - c^{2} + 1|$$

$$= |x^{2} - c^{2}|$$

$$= |(x + c) (x - c)|$$

$$= |(x + c)| |(x - c)|$$

$$= |x + c| |x - c|$$

Since $|x + c| \le |2c|$

$$|f(x) - f(c)| \le |2c| |x - c| < \varepsilon$$

So, given $\varepsilon>0$, we can **choose** $\pmb{\delta}=\left|\frac{1}{2c}\right|\pmb{\varepsilon}>\pmb{0}$ in the Definition of Continuity. So, substituting the chosen δ for |x-c| we get:

$$|f(x) - f(c)| \le |2c| \left(\left| \frac{1}{2c} \right| \varepsilon \right) = \varepsilon$$

Since both conditions are met, f(x) is continuous.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

Derivatives	(See Larson's 1-pager of common derivatives)
Definition of a Derivative of a Function (Slope Function)	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ $\frac{dy}{dx}, y', f'(x), f^{(n)}(x), \frac{d}{dx}[f(x)], D_x[y]$ $\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$
Derivatives Notation	$\frac{dy}{dx}, y', f'(x), f^{(n)}(x), \frac{d}{dx}[f(x)], D_x[y]$
1. Chain Rule	$\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$ $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$ $\frac{d}{dx}[c] = 0$
2. Constant Rule	$\frac{d}{dx}[c] = 0$
3. Constant Multiple Rule	$\frac{d}{dx}[cf(x)] = cf'(x)$ $\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$ $\frac{d}{dx}[fg] = fg' + gf'$
4. Sum and Difference Rule	$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$
5. Product Rule	$\frac{d}{dx}[fg] = fg' + gf'$
6. Quotient Rule	$\frac{d}{dx} \left[\frac{f}{g} \right] = \frac{gf' - fg'}{g^2}$ $\frac{d}{dx} [x^n] = nx^{n-1}$
7. Power Rule	$\frac{d}{dx}[x^n] = nx^{n-1}$
8. General Power Rule	7
9. Power Rule for x	$\frac{d}{dx}[u^n] = nu^{n-1} u' \text{ where } u = u(x)$ $\frac{d}{dx}[x] = 1 \text{ (think } x = x^1 \text{ and } x^0 = 1)$
10. Absolute Value	$\frac{d}{dx}[x] = \frac{x}{ x }$ $\frac{d}{dx}[e^x] = e^x$
11. Natural Exponential Rule	$\frac{d}{dx}[e^x] = e^x$
12. General Natural Exponential Rule	$\frac{d}{dx} [e^{g(x)}] = e^{g(x)} \cdot g'(x)$
13. Exponential Rule	$\frac{d}{dx}[a^x] = (\ln a) \cdot a^x$
14. General Exponential Rule	$\frac{d}{dx} \left[e^{g(x)} \right] = e^{g(x)} \cdot g'(x)$ $\frac{d}{dx} \left[a^x \right] = (\ln a) \cdot a^x$ $\frac{d}{dx} \left[a^{g(x)} \right] = (\ln a) \cdot a^{g(x)} \cdot g'(x)$ $\frac{d}{dx} \left[\ln x \right] = 1$
15. Natural Logorithm Rule	$\frac{d}{dx}[\ln x] = \frac{1}{x}$
16. General Natural Logorithm Rule	$\frac{d}{dx}[\ln f(x)] = \frac{1}{f(x)} \cdot f'(x)$
17. Logorithm Rule	$\frac{d}{dx}[\log_a x] = \frac{1}{(\ln a) x}$
18. General Logorithm Rule	$\frac{d}{dx}[\ln x] = \frac{1}{x}$ $\frac{d}{dx}[\ln f(x)] = \frac{1}{f(x)} \cdot f'(x)$ $\frac{d}{dx}[\log_a x] = \frac{1}{(\ln a) x}$ $\frac{d}{dx}[\log_a f(x)] = \frac{1}{\ln x} \cdot \frac{f'(x)}{f(x)}$

	,
19. Sine	$\frac{d}{dx}[\sin(x)] = \cos(x)$
20. Cosine	$\frac{d}{dx}[\cos(x)] = -\sin(x)$
21. Tangent	$\frac{d}{dx}[tan(x)] = sec^2(x)$
22. Cotangent	$\frac{d}{dx}[cot(x)] = -csc^2(x)$
23. Secant	$\frac{d}{dx}[sin(x)] = cos(x)$ $\frac{d}{dx}[cos(x)] = -sin(x)$ $\frac{d}{dx}[tan(x)] = sec^{2}(x)$ $\frac{d}{dx}[cot(x)] = -csc^{2}(x)$ $\frac{d}{dx}[sec(x)] = sec(x)tan(x)$ $\frac{d}{dx}[cos(x)] = -csc(x)cot(x)$
24. Cosecant	<u> </u>
25. Arcsine	$\frac{d}{dx}[\sin^{-1}(x)] = \frac{1}{\sqrt{1-x^2}}$
26. Arccosine	$\frac{d}{dx}[\cos^{-1}(x)] = \frac{-1}{\sqrt{1-x^2}}$
27. Arctangent	$\frac{d}{dx}[\tan^{-1}(x)] = \frac{1}{1+x^2}$
28. Arccotangent	$\frac{d}{dx}[\cot^{-1}(x)] = \frac{-1}{1+x^2}$
29. Arcsecant	$\frac{d}{dx}[\sec^{-1}(x)] = \frac{1}{ x \sqrt{x^2 - 1}}$
30. Arccosecant	$\frac{d}{dx}[\sin^{-1}(x)] = \frac{1}{\sqrt{1 - x^2}}$ $\frac{d}{dx}[\cos^{-1}(x)] = \frac{-1}{\sqrt{1 - x^2}}$ $\frac{d}{dx}[\tan^{-1}(x)] = \frac{1}{1 + x^2}$ $\frac{d}{dx}[\cot^{-1}(x)] = \frac{-1}{1 + x^2}$ $\frac{d}{dx}[\sec^{-1}(x)] = \frac{1}{ x \sqrt{x^2 - 1}}$ $\frac{d}{dx}[\csc^{-1}(x)] = \frac{-1}{ x \sqrt{x^2 - 1}}$
31. Hyperbolic Sine $\left(\frac{e^x - e^{-x}}{2}\right)$	$\frac{d}{dx}[\sinh(x)] = \cosh(x)$
32. Hyperbolic Cosine $\left(\frac{e^x + e^{-x}}{2}\right)$	$\frac{d}{dx}[cosh(x)] = sinh(x)$
33. Hyperbolic Tangent	$\frac{d}{dx}[tanh(x)] = sech^2(x)$
34. Hyperbolic Cotangent	$\frac{d}{dx}[coth(x)] = -csch^2(x)$
35. Hyperbolic Secant	$\frac{d}{dx}[sech(x)] = -sech(x) tanh(x)$
36. Hyperbolic Cosecant	$\frac{d}{dx}[csch(x)] = -csch(x)coth(x)$
37. Hyperbolic Arcsine	$\frac{d}{dx}[\sinh^{-1}(x)] = \frac{1}{\sqrt{x^2 + 1}}$
38. Hyperbolic Arccosine	$\frac{d}{dx}[\cosh^{-1}(x)] = \frac{1}{\sqrt{x^2 - 1}}$
39. Hyperbolic Arctangent	$\frac{d}{dx}[\tanh^{-1}(x)] = \frac{1}{1 - x^2}$
40. Hyperbolic Arccotangent	$\frac{d}{dx}[\coth^{-1}(x)] = \frac{1}{1 - x^2}$
41. Hyperbolic Arcsecant	$\frac{d}{dx}[\operatorname{sech}^{-1}(x)] = \frac{-1}{x\sqrt{1-x^2}}$

42. Hyperbolic Arccosecant	$\frac{d}{dx}\left[\operatorname{csch}^{-1}(x)\right] = \frac{-1}{dx}$
	$dx = x \sqrt{1 + x^2}$

Physics	Translational Motion
Position Function	$s(t) = \frac{1}{2}\boldsymbol{g}t^2 + \boldsymbol{v}_0t + \boldsymbol{s}_0$
Velocity Function	$v(t) = s'(t) = \mathbf{g}t + \mathbf{v}_0$
Acceleration Function	a(t) = v'(t) = s''(t)
Jerk Function	$j(t) = a'(t) = v''(t) = s^{(3)}(t)$
Gravity (g)	$\boldsymbol{g} \approx -9.81 \frac{m}{s^2} \text{ or } -32.2 \frac{ft}{s^2}$

Analyzing the Graph of a Function	(See Harold's Illegals and Graphing Rationals Cheat Sheet)
x-Intercepts (Zeros or Roots)	f(x) = 0
y-Intercept	f(0) = y
Domain	Valid x values
Range	Valid y values
Continuity	No division by 0, no negative square roots or logs
Vertical Asymptotes (VA)	x = division by 0 or undefined
Horizontal Asymptotes (HA)	$\lim_{x \to \infty^{-}} f(x) \to y \text{ and } \lim_{x \to \infty^{+}} f(x) \to y$
Infinite Limits at Infinity	$\lim_{x \to \infty^{-}} f(x) \to \infty$ and $\lim_{x \to \infty^{+}} f(x) \to \infty$
Differentiability	Limit from both directions arrives at the same slope
Relative Extrema	Create a table with domains: $f(x)$, $f'(x)$, $f''(x)$
Concavity	If $f''(x) \to +$, then cup up \bigcup
	If $f''(x) \rightarrow -$, then cup down \bigcap
Points of Inflection	f''(x) = 0 (concavity changes)

Graphing with Derivatives	
Test for Increasing and Decreasing Functions	1. If $f'(x) > 0$, then f is increasing (slope up) \nearrow 2. If $f'(x) < 0$, then f is decreasing (slope down) \searrow 3. If $f'(x) = 0$, then f is constant (zero slope) \rightarrow
First Derivative Test	1. If $f'(x)$ changes from – to + at c , then f has a relative minimum at $(c, f(c))$ 2. If $f'(x)$ changes from + to - at c , then f has a relative maximum at $(c, f(c))$ 3. If $f'(x)$, is + c + or - c -, then $f(c)$ is neither
Second Deriviative Test Let $f'(c)$ =0, and $f''(x)$ exists, then	1. If $f''(x) > 0$, then f has a relative minimum at $(c, f(c))$ 2. If $f''(x) < 0$, then f has a relative maximum at $(c, f(c))$ 3. If $f''(x) = 0$, then the test fails (See 1^{st} derivative test)
Test for Concavity	1. If $f''(x) > 0$ for all x , then the graph is concave up \cup 2. If $f''(x) < 0$ for all x , then the graph is concave down \cap
Points of Inflection Change in concavity	If $(c, f(c))$ is a point of inflection of $f(x)$, then either 1. $f''(c) = 0$ or 2. $f''(x)$ does not exist at $x = c$

Tangent Lines	
Genreal Form	ax + by + c = 0
Slope-Intercept Form	y = mx + b
Point-Slope Form	$y - y_0 = m(x - x_0)$ where $m = f'(x_0)$ at point (x_0, y_0)
Calculus Form	f(x) = f'(c)(x - c) + f(c)
Slope	$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \to \frac{dy}{dx} = f'(x)$

Differentiation & Differentials	
Rolle's Theorem f is continuous on the closed interval [a,b], and f is differentiable on the open interval (a,b).	If $f(a) = f(b)$, then there exists at least one number c in (a,b) such that $f'(c) = 0$.
Mean Value Theorem If f meets the conditions of Rolle's Theorem, then you can find 'c'.	$f'(c) = \frac{f(b) - f(a)}{b - a} = \frac{\Delta y}{\Delta x}$ $f(b) = f(a) + (b - a)f'(c)$
Intermediate Value Theorem f is a continuous function with an interval, [a, b], as its domain.	If f takes values $f(a)$ and $f(b)$ at each end of the interval, then it also takes any value between $f(a)$ and $f(b)$ at some point within the interval.
Calculating Differentials (Tanget line approximation)	$f(x + \Delta x) \approx f(x) + \Delta y = f(x) + f'(x) \Delta x$ $dy = f'(x) dx \text{ so } \Delta y = f'(x) \Delta x$ $\text{Relative Error} = \frac{\Delta f}{f} \text{ in } \%$ $\text{Example: } \sqrt[4]{82} \rightarrow f(x) = \sqrt[4]{x}, f(x + \Delta x) = f(81 + 1)$
Newton's Method (Finds zeros of f , or finds c if $f(c) = 0$.)	Example: $\sqrt[4]{82} \to f(x) = \sqrt[4]{x}, f(x + \Delta x) = f(81 + 1)$ $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ Example: $\sqrt[4]{82} \to f(x) = x^4 - 82 = 0, x_n = 3$
Related Rates $\frac{dy}{dt} = ?$ $\frac{dy}{dt} = 2$	Steps to solve: 1. Identify the known variables and rates of change. $x = 15 \ m; \ y = 20 \ m; \ x' = 2 \frac{m}{s}; \ y' = ?$ 2. Construct an equation relating these quantities. $x^2 + y^2 = r^2$ 3. Differentiate both sides of the equation. $2xx' + 2yy' = 0$ 4. Solve for the desired rate of change. $y' = -\frac{x}{y} x'$ 5. Substitute the known rates of change and quantities into the equation.
L'Hôpital's Rule	$y' = -\frac{15}{20} \cdot 2 = \frac{3}{2} \frac{m}{s}$ $If \lim_{x \to c} f(x) = \lim_{x \to c} \frac{P(x)}{Q(x)} \text{ and}$ $\left\{ \frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, 1^{\infty}, 0^{0}, \infty^{0}, \infty - \infty \right\}, \text{ but not } \{0^{\infty}\},$ $\text{then } \lim_{x \to c} \frac{P(x)}{Q(x)} = \lim_{x \to c} \frac{P'(x)}{Q'(x)} = \lim_{x \to c} \frac{P''(x)}{Q''(x)} = \cdots$

Integration	(See Harold's Fundamental Theorem of Calculus Cheat Sheet)
Basic Integration Rules Integration is the "inverse" of differentiation, and vice versa.	$\int f'(x) dx = f(x) + C$ $\frac{d}{dx} \int f(x) dx = f(x)$
f(x) = 0	$\int 0 dx = C$
$f(x) = k = kx^0$	$\int k dx = kx + C$
1. The Constant Multiple Rule	$\int k f(x) dx = k \int f(x) dx$
2. The Sum and Difference Rule	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$
The Power Rule $f(x) = kx^n$	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$ $\int x^{n} dx = \frac{x^{n+1}}{n+1} + C, \text{ where } n \neq -1$ $If \ n = -1, \text{ then } \int x^{-1} dx = \ln x + C$
The General Power Rule	If $u = g(x)$, and $u' = \frac{d}{dx}g(x)$ then $\int u^n u' dx = \frac{u^{n+1}}{n+1} + C$, where $n \neq -1$
Reimann Sum	$\sum_{i=1}^{n} f(c_i) \Delta x_i, \text{where } x_{i-1} \le c_i \le x_i$
Definition of a Definite Integral Area under curve	$\ \Delta\ = \Delta x = \frac{b-a}{n}$ $\lim_{\ \Delta\ \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i = \int_a^b f(x) dx$ $\int_a^b f(x) dx = -\int_b^a f(x) dx$ $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$
Swap Bounds	$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$
Additive Interval Property	$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$
The Fundamental Theorem of Calculus	$\int_{a}^{b} f(x) dx = F(b) - F(a)$
The Second Fundamental Theorem of Calculus	$\frac{d}{dx} \int_{a}^{b} f(t) dt = f(x)$ $\frac{d}{dx} \int_{a}^{g(x)} f(t) dt = f(g(x))g'(x)$ $\frac{d}{dx} \int_{a}^{h(x)} f(t) dt = f(h(x))h'(x) - f(g(x))g'(x)$
Mean Value Theorem for Integrals	$\int_{a}^{b} f(x) dx = f(c)(b-a) \text{ Find 'c'}.$
The Average Value for a Function	$\int_{a}^{b} f(x) dx = f(c)(b - a) \text{ Find 'c'}.$ $\frac{1}{b - a} \int_{a}^{b} f(x) dx$

Integration Methods	
1. Memorized	See Larson's 1-pager of common integrals
2. U-Substitution	C
	$\int f(g(x))g'(x)dx = F(g(x)) + C$
	Set $u = g(x)$, then $du = g'(x) dx$
	$\int f(u) du = F(u) + C$
	$u = \underline{\qquad} du = \underline{\qquad} dx$
	$u = \underline{\qquad} du = \underline{\qquad} dx$ $\int u dv = uv - \int v du$
	· · · · · · · · · · · · · · · · · · ·
	$egin{array}{cccc} u = & & v = & & \\ du = & & dv = & & \\ & & & & \end{array}$
3. Integration by Parts	Pick ' u ' using the LIATE Rule:
	L – Logarithmic : $\ln x$, $\log_b x$
	I – Inverse Trig.: $tan^{-1} x$, $sec^{-1} x$, etc .
	A – Algebraic: x^2 , $3x^{60}$, etc.
	T – Trigonometric: $\sin x$, $\tan x$, etc .
	E – Exponential: e^x , 19^x
	$\int \frac{P(x)}{O(x)} dx$
	where $P(x)$ and $Q(x)$ are polynomials
4. Dantiel Supertions	where I (w) and \(\frac{1}{2}\)(w) are polynomials
4. Partial Fractions	Case 1: If degree of $P(x) \ge Q(x)$
	then do long division first
	Case 2: If degree of $P(x) < Q(x)$
	then do partial fraction expansion
	$\int \sqrt{a^2 - x^2} \ dx$
5a. Trig Substitution for $\sqrt{a^2 - x^2}$	Substutution: $x = a \sin \theta$
	Identity: $1 - \sin^2 \theta = \cos^2 \theta$
	·
	$\int \sqrt{x^2-a^2} \ dx$
5b. Trig Substitution for $\sqrt{x^2 - a^2}$	Substitution: $x = a \sec \theta$
	Identity: $sec^2 \theta - 1 = tan^2 \theta$
	<i>c</i>
5c. Trig Substitution for $\sqrt{x^2 + a^2}$	$\int \sqrt{x^2 + a^2} \ dx$
	Substutution: $x = a \tan \theta$
	Identity: $tan^2 \theta + 1 = sec^2 \theta$
6. Table of Integrals	CRC Standard Mathematical Tables book
7. Computer Algebra Systems (CAS)	TI-Nspire CX CAS Graphing Calculator
	TI – Nspire CAS iPad app Riemann Sum, Midpoint Rule, Trapezoidal Rule, Simpson's Rule,
8. Numerical Methods	TI-84, etc.
0. MolframAlaba	Google of mathematics. Shows steps. Free.
9. WolframAlpha	www.wolframalpha.com

Partial Fractions	(See Harold's Partial Fractions Cheat Sheet)
Condition	$f(x) = \frac{P(x)}{Q(x)}$ where $P(x)$ and $Q(x)$ are polynomials and degree of $P(x) < Q(x)$ If degree of $P(x) \ge Q(x)$ then do long division first
Example Expansion	$\frac{P(x)}{(ax+b)(cx+d)^2(ex^2+fx+g)} = \frac{A}{(ax+b)} + \frac{B}{(cx+d)} + \frac{C}{(cx+d)^2} + \frac{Dx+E}{(ex^2+fx+g)}$
Typical Solution	$\int \frac{a}{x+b} dx = a \ln x+b + C$

Sequences & Series	(See Harold's Series Cheat Sheet)
Sequence	$\lim_{n\to\infty}a_n=L \text{(Limit)}$ Example: $(a_n,a_{n+1},a_{n+2},)$
Geometric Series	$S = \lim_{n \to \infty} \frac{a(1-r^n)}{1-r} = \frac{a}{1-r}$ only if $ r < 1$ where r is the radius of convergence and $(-r,r)$ is the interval of convergence

Convergence Tests	(See Harold's Series Convergence Tests Cheat Sheet)	
	1. Divergence or n^{th} Term 2. Geometric Series	6. Ratio 7. Root
Series Convergence Tests	3. p-Series	8. Direct Comparison
	4. Alternating Series	9. Limit Comparison
	5. Integral	10. Telescoping Series

Taylor Series	(See Harold's Taylor Series Cheat Sheet)	
Taylor Series	$f(x) = P_n(x) + R_n(x)$ $= \sum_{n=0}^{+\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n + \frac{f^{(n+1)}(x^*)}{(n+1)!} (x-c)^{n+1}$	
	where $x \le x^* \le c$ (worst case scenario x^*)	
	and $\lim_{x \to +\infty} R_n(x) = 0$	