Harold's Business Calculus **Cheat Sheet**

22 December 2022

Algebra Reference

Exponents		
Multiplication	$a^n a^m = a^{n+m}$	$\frac{a^n}{a^m} = a^{n-m} = \frac{1}{a^{m-n}}$
Power to a Power	$(a^n)^m = a^{nm}$	
Distributive	$(ab)^n = a^n b^n$	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$
Zero Power	$a^0 = 1$ if $a \neq 0$	
Power Sign Change	$a^{-n} = \frac{1}{a^n}$	$\frac{1}{a^{-n}} = a^n$
Negative Powers	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n = \frac{b^n}{a^n}$	$a^{\underline{n}}_{\overline{m}} = \left(a^{\underline{1}}_{\overline{m}}\right)^n = (a^n)^{\underline{1}}_{\overline{m}}$

Radicals					
Convert to Power	$\sqrt[n]{a} = a^{\frac{1}{n}}$	$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$			
Root of a Root	$\sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a}$	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$			

Logarithms				
Definition	Log	≡ Exponential		
Demition	$log_b x = y$			
Example	$log_{5} 125 = 3$	\equiv 125 = 5 ³		
Common Log		assumed in pre-1955 math textbooks. assumed in computer science textbooks.		
Natural Log	$ln x = log_e x$	<i>where e</i> ≈ 2.718281828		
Powers (x ²)	$log_b(x^r) = r log_b x$	$\ln x^r = r \ln x$		
Multiplication (\times)	$log_b(xy) = log_b x + log_b y$	ln(xy) = ln x + ln y		
Division (÷)	$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$	$ln\left(\frac{x}{y}\right) = ln x - ln y$		
Zero (0) and One (1)	$log_b 1 = 0$	$log_b b = 1$		
Inverse Functions	$log_b b^x = x$	$b^{\log_b x} = x$		
Change of Base	$\log_b x = \frac{\log_a x}{\log_a b} = \frac{\ln x}{\ln b}$	TI-84: [MATH] + [A: logBASE(] \rightarrow log ()		

3.1 Limits

Property	(Map to Larson's 1-pager of common derivatives)			
	Let f be a function and let a and L be real numbers. If			
Definition of Limit	 as x takes values closer and closer (but not equal) to a on both sides of a, the corresponding values of f(x) get closer and closer (and perhaps equal) to L; and the value of f(x) can be made as close to L as desired by taking values of x close enough to a; 			
	then <i>L</i> is the limit of $f(x)$ as x approaches <i>a</i> , written $\lim_{x \to a} f(x) = L$			
	The limit of f as x approaches a may not exist.			
	1. If $f(x)$ becomes infinitely large in magnitude (positive or negative) as x approaches the number a from either side, we write			
	$\lim_{x \to a} f(x) = \infty$			
	or			
	$\lim_{x \to a} f(x) = -\infty$			
Existence of Limits	In either case the limit does not exist.			
	2. If $f(x)$ becomes infinitely large in magnitude (positive) as x approaches a from one side and infinitely large in magnitude (negative) as x approaches a from the other side, then $\lim_{x \to a} f(x)$ does not exist.			
	3. If $\lim_{x \to a^{-}} f(x) = L$ and $\lim_{x \to a^{+}} f(x) = M$, and $L \neq M$, then $\lim_{x \to a} f(x)$ does not exist.			
Limits at Infinity	$\lim_{x \to \infty} \frac{1}{x^n} = 0 \qquad \qquad \lim_{x \to -\infty} \frac{1}{x^n} = 0$			
	If $f(x) = \frac{p(x)}{q(x)}$, for polynomials $p(x)$ and $q(x), q(x) \neq 0$,			
	$\lim_{x \to +\infty} f(x)$ and $\lim_{x \to -\infty} f(x)$ can be found as follows.			
	1. Divide $p(x)$ and $q(x)$ by the highest power of x in $q(x)$.			
Finding Limits at Infinity	2. Use the rules for limits, including the rules for limits at infinity,			
	$\lim_{x \to \infty} \frac{1}{x^n} = 0$			
	and 1			
	$\lim_{x \to -\infty} \frac{1}{x^n} = 0$			
	to find the limit of the result from Step 1.			

Rules for Limits

Rule	(Map to Larson's 1-pager of common derivatives)		
Given	Let a , A , and B be real numbers, and let f and g be functions such that and $\lim_{x \to a} f(x) = A$ $\lim_{x \to a} g(x) = B.$		
1. Constant (<i>c</i>)	If c is a constant, then $\lim_{x \to a} c = c$ and $\lim_{x \to a} [c \cdot f(x)] = c \cdot \lim_{x \to a} f(x) = c \cdot A$		
2. Sum or Difference (+, —)	The limit of a sum or difference is the sum or difference of the limits. $\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = A \pm B$		
3. Product (×) The limit of products is the product of the limits. $\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = A \cdot$			
4. Quotient (÷)	The limit of a quotient is the quotient of the limits, provided the limit of the denominator is not zero. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{A}{B}$ if $B \neq 0$.		
5. Polynomial ($P(x)$)	If $p(x)$ is a polynomial, then $\lim_{x \to a} p(x) = p(a)$		
6. Exponent (<i>x^k</i>)	For any real number k, $\lim_{x \to a} [f(x)]^k = \left[\lim_{x \to a} f(x)\right]^k = A^k$ provided that this limit exists.		
7. Equivalent Functions (=)	$\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$ If $f(x) = g(x)$ for all $x \neq a$.		
8. Function Exponent	For any real number $b > 0$, $\lim_{x \to a} b^{f(x)} = b^{\lim_{x \to a} f(x)} = b^A$		
9. Logorithm	For any real number b such that $0 < b < 1$ or $1 < b$, $\lim_{x \to a} [log_b f(x)] = log_b \left[\lim_{x \to a} f(x) \right] = log_b A$ if $A > 0$.		

3.2 Continuity

3.3 Rates of Change

Term	Equation		
Average Rate of Change	The average rate of change of $f(x)$ with respect to x for a function as x changes from a to b is $\frac{f(b) - f(a)}{b - a}$		
Instantaneous Rate of Change	The instantaneous rate of change for a function f when $x = a$ is $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ or $\lim_{b \to a} \frac{f(b) - f(a)}{b - a}$ provided this limit exists.		

3.4 Definition of the Derivative

Term		Defir	nition
Slope of the Tangent Line	The tangent line of the graph of $y = f(x)$ at the point $(a, f(a))$ is the line through this point having slope $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ provided this limit exists. If the limit does not exist, then there is no tangent at that point.		
Derivative	The derivative of the function <i>f</i> at <i>x</i> is defined as		
f(x) Secant lines Points slide down graph.	or $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ or $f'(x) = \lim_{b \to x} \frac{f(b) - f(x)}{b - x}$ provided this limit exists.		
R 0 x		/ set = 0 to find minimu	ating function at any point <i>x</i> . um (loss) and maximum (profit)
Notations for the Derivative of $y = f(x)$	$\frac{dy}{dx} = y'$ $\frac{d}{dx}[f(x)] = f'(x)$		$f^{(n)}(x) \\ D_x[y]$
	$x_2 - x_1$ Useful for describing the equation of a line throug two points.		the equation of a line through
Equivalent Expressions for the Change in <i>x</i>	$b-a$ A way to write $x_2 - x_1$ without the subscripts. Δx Useful for describing the change in x without referring to the individual points.		
Equation of the Tangent Line	hA way to write Δx with just one symbol.The tangent line to the graph of $y = f(x)$ at the point $(x_1, f(x_1))$ is given by the equation $y - f(x_1) = f'(x_1)(x - x_1)$,provided $f'(x)$ exists.		
Existence of the Derivative Function Vertical f(x)	 The derivative exists when a function <i>f</i> satisfies <i>all</i> of the following conditions at a point. 1. <i>f</i> is continuous, 2. <i>f</i> is smooth, and 3. <i>f</i> does not have a vertical tangent line. The derivative does not exist when <i>any</i> of the following conditions are true for a function at a point. 1. <i>f</i> is discontinuous, 2. <i>f</i> has a sharp corner, or 3. <i>f</i> has a vertical tangent line. 		

4. Derivative Formulas

Rule	Formula
1. Chain Rule (🔗)	$\frac{d}{dx}[f \circ g(x)] = \frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$ $\frac{d}{dx}[c] = 0$
2. Constant Rule (<i>c</i>)	$\frac{d}{dx}[c] = 0$ (think $c = cx^0 \rightarrow c0x^{-1} = 0$ after applying rule #7)
3. Constant Multiple Rule (<i>c</i>)	$\frac{d}{dx}[cf(x)] = cf'(x)$
4. Sum and Difference Rule (+, $-$)	$\frac{dx}{(think \ c = cx^0 \to c0x^{-1} = 0 \ after \ applying \ rule \ \#7)}$ $\frac{d}{dx}[cf(x)] = cf'(x)$ $\frac{d}{dx}[f \pm g] = f' \pm g'$ $\frac{d}{dx}[fg] = fg' + gf'$
5. Product Rule (×)	$\frac{d}{dx}[fg] = fg' + gf'$
6. Quotient Rule (÷)	$\frac{d}{dx} \left[\frac{f}{g} \right] = \frac{gf' - fg'}{g^2}$ (same as $\frac{f}{g} = fg^{-1}$ then apply rule #4) $\frac{d}{dx} [cx^n] = cnx^{n-1}$ $\frac{d}{dx} [f^n] = nf^{n-1} f'$ $\frac{d}{dx} [x] = 1$
7. Power Rule (<i>x</i> ")	$\frac{d}{dx}[cx^n] = cnx^{n-1}$
8. General Power Rule (x ⁿ)	$\frac{d}{dx}[f^n] = nf^{n-1}f'$
9. Power Rule for $f(x) = x$	$\frac{d}{dx}[x] = 1$ (think $x = x^1 \rightarrow 1x^0 = 1$ after applying rule #7)
10. Natural Exponential Rule	$\frac{d}{dx}[e^x] = e^x$
11. General Natural Exponential Rule	$\frac{dx^{-1}}{(think \ x = x^{1} \rightarrow 1x^{0} = 1 \ after \ applying \ rule \ \#7)}$ $\frac{d}{dx}[e^{x}] = e^{x}$ $\frac{d}{dx}[e^{g(x)}] = e^{g(x)} \cdot g'(x)$ $\frac{d}{dx}[a^{x}] = (\ln a) \cdot a^{x}$
12. Exponential Rule	$\frac{d}{dx}[a^x] = (\ln a) \cdot a^x$
13. General Exponential Rule	$\frac{d}{dx} \left[a^{g(x)} \right] = (\ln a) \cdot a^{g(x)} \cdot g'(x)$
14. Natural Logorithm Rule	$\frac{d}{dx}[\ln x] = \frac{1}{x}$
15. General Natural Logorithm Rule	$\frac{d}{dx}[\ln f(x)] = \frac{1}{f(x)} \cdot f'(x)$
16. Logorithm Rule	$\frac{d}{dx}[\log_a x] = \frac{1}{(\ln a) x}$
17. General Logorithm Rule	$\frac{d}{dx}[ln f(x)] = \frac{1}{f(x)} \cdot f'(x)$ $\frac{d}{dx}[log_a x] = \frac{1}{(ln a) x}$ $\frac{d}{dx}[log_a f(x)] = \frac{1}{ln a} \cdot \frac{f'(x)}{f(x)}$

Equation of a Line

Form	Equation		
Genreal Form	ax + by + c = 0		
Slope-Intercept Form	y = mx + b		
Point-Slope Form	$y - y_0 = m(x - x_0)$ where $m = f'(x_0)$ at point (x_0, y_0)		
Calculus Form	y = f'(c)(x - c) + f(c)		
Slope	$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \rightarrow \frac{dy}{dx} = f'(x)$		

4.1 Derivative Applications

Application	Business Case				
	If the total cost to manufacture x items is given by $C(x)$, then the average				
Average Cost	cost per item is $\overline{C}(x) = C(x)/x$.				
Marginal Average Cost	The marginal average cost is the derivative of the average cost function, $\overline{C}'(x)$.				
	C(x) = (x + 1, C(x + 1)) $(x, C(x)) = C'(x)$ $C(x + 1) - C(x)$ $C'(x) = (x + 1) - C(x)$				
Profit	Profit equals total Revenue minus Cost or Expenses. P(x) = R(x) - C(x)				
	$R(q), C(q)$ $C(q) = 10 + 5q + \frac{1}{60}q^{3}$ $R(q) = 90q - q^{2}$				

5. Graphing with Derivatives

Term	Definition				
Test for Increasing and Decreasing Functions	1. If $f'(x) > 0$, then f is increasing (slope up). \nearrow 2. If $f'(x) < 0$, then f is decreasing (slope down). \square 3. If $f'(x) = 0$, then f is constant (zero slope). \rightarrow				
Critical Numbers	The critical numbers for a function f are those numbers c in the domain of f for which $f'(c) = 0$ or $f'(c)$ does not exist.				
Critical Point	A critical point is a point whose x-coordinate is the critical number c and whose y-coordinate is $f(c)$.				
First Derivative (Slope Formula)	f'(x) = 0 finds critical points (min. and max.). Don't forget to check the boundaries: $f(a)$ and $f(b)$.				
First Derivative Test	1. If $f'(x)$ changes from – to + at c , then f has a relative minimum at $(c, f(c))$. 2. If $f'(x)$ changes from + to - at c , then f has a relative maximum at $(c, f(c))$. 3. If $f'(x)$, is + c + or – c –, then $f(c)$ is neither.				
Test for Concavity	1. If $f''(x) > 0$ for all x , then the graph is concave up. U 2. If $f''(x) < 0$ for all x , then the graph is concave down. \cap				
Second Deriviative Test Let f '(c)=0, and f "(x) exists, then	1. If $f''(x) > 0$, then f has a relative minimum at $(c, f(c))$. 2. If $f''(x) < 0$, then f has a relative maximum at $(c, f(c))$. 3. If $f''(x) = 0$, then the test fails (See 1^{st} derivative test). If $f''(x) \rightarrow +$, then cup up \bigcup (min.) If $f''(x) \rightarrow -$, then cup down \cap (max.)				
Points of Inflection Change in concavity	If $(c, f(c))$ is a point of inflection of $f(x)$, then either 1. $f''(c) = 0$ or 2. $f''(x)$ does not exist at $x = c$.				
	$f(x) \qquad f''(x) < 0$ Concave downward $Relative maximum \qquad y = f(x)$ Relative minimum $f''(x) > 0$ Concave upward $d \qquad x$				

5.4 Curve Sketching

Step	Description						
To sketch the graph of a function <i>f</i> :							
	Consider the domain of the function, and note any restrictions.						
1.			d dividing by 0, takinរួ			, of a negative r	number, or
	taking the logarithm of 0 or a negative number.)						
2.	Find the y-intercept (if it exists) by substituting $x = 0$ into $f(x)$. Find any x-intercepts by solving $f(x) = 0$ if this is not too difficult.						
			tional function, find a				oro tho
			is 0, and find any ho	•			
	<i>−∞</i> .						
3.							
			exponential function,				
	-		garithmic function, f	ind any vertical	asymptotes (VA)		
4.	Investigat		mmetry. (x), the function is e	von so the gran	h is symmetric a	bout the y avia	
4.		-	f(x), the function is $f(x)$, the function is				
	Find $f'(x)$		j (<i>w</i>) <i>,,,</i> and remember in		<u>, , , , , , , , , , , , , , , , , , , </u>		
5.	Locate an	y cr	itical points by solvin	g the equation ;	f'(x) = 0 and de	etermining whe	re $f'(x)$ does not
5.	exist, but						
	-		tive extrema and det	ermine where <i>f</i>	is increasing or	decreasing.	
	Find $f''(x)$	-	tial inflection points l	hy colving the o	f''(x) =	0 and datarmi	ningwhoro
6.	f''(x) doe			by solving the ed	(x) =	o and determi	ning where
			here f is concave up	ward or concave	e downward.		
			d y intercepts, the cr			s, the asymptote	es, and other
7.	points as						
			ge of any symmetry				
8.	Connect the points with a smooth curve using the correct concavity, being careful not to connect points where the function is not defined.					not to connect	
	-		raph using a graphing		esmos		
9.	-	-	looks very different f			what ways the p	picture differs
	-	nd use that information to help find your mistakes.					
					Graph St	100 DO OFT	
			Interval	()		-	(1
					(-1,0)	(0.1)	(1,∞)
			Sign of f'	+	-	-	+
			Sign of f"	-	-	+	+
Example	e Chart		f Increasing or Decreasing	Increasing	Decreasing	Decreasing	Increasing
			Concavity of f	Downward	Downward	Upward	Upward
			Shape of Graph	(\mathcal{A}	$\mathbf{\zeta}$	\mathcal{I}

6.1 Absolute Extrema

Term	Definition	
f(x) Absolute	$f(x) \uparrow \qquad \qquad f(x) \uparrow \qquad \text{Absolute}$	
maximum	Absolute	
•	maximum	
$p x_1 x_2 x_3$	\tilde{x} x_1 x_2 \tilde{x} x_1 x_2 x_3 x_4 x_5 \tilde{x}	
	Absolute	
Absolute	minimum	
minimum	Absolute	
	minimum	
	Let <i>f</i> be a function defined on some interval.	
Absolute Maximum	Let <i>c</i> be a number in the interval. Then $f(c)$ is the checkute maximum of <i>f</i> on the interval if	
Absolute Maximum	Then $f(c)$ is the absolute maximum of f on the interval if $f(x) \le f(c)$	
	for every x in the interval.	
	Let <i>f</i> be a function defined on some interval.	
	Let c be a number in the interval.	
Absolute Minimum	Then $f(c)$ is the absolute minimum of f on the interval if	
	$f(x) \ge f(c)$	
	for every x in the interval.	
Absolute Extremum (Extrima)	A function <i>f</i> has an absolute extremum (plural: extrema) at <i>c</i> if it has	
	either an absolute maximum or an absolute minimum there.	
Extreme Value Theorem	A function <i>f</i> that is continuous on a closed interval [<i>a</i> , <i>b</i>] will have both an absolute maximum and an absolute minimum on the interval.	
	To find absolute extrema for a function f continuous on a closed interval	
	[a, b]:	
	1. Find all critical numbers for f in (a, b).	
Finding Absolute Futures	2. Evaluate f for all critical numbers in (a, b) .	
Finding Absolute Extrema	3. Evaluate <i>f</i> for the <i>endpoints a</i> and <i>b</i> of the interval [<i>a</i> , <i>b</i>].	
	4. The largest value found in Step 2 or 3 is the absolute maximum for f	
	on $[a, b]$, and the smallest value found is the absolute minimum for f on	
	[<i>a</i> , <i>b</i>].	
	Suppose a function f is continuous on an interval I and that f has exactly	
Critical Point Theorem	one critical number in the interval <i>I</i> , located at $x = c$.	
	If f has a relative maximum at $x = c$, then this relative maximum is the	
	absolute maximum of f on the interval <i>I</i> .	
	If f has a relative minimum at $x = c$, then this relative minimum is the	
	absolute minimum of f on the interval I.	

6.2 Applications of Extrema

Step	Description
Solving	an Applied Extrema Problem
1.	Read the problem carefully. Make sure you understand what is given and what is unknown.
2.	If possible, sketch a diagram. Label the various parts.
3.	Decide which variable must be maximized or minimized. Express that variable as a function of one other variable.
4.	Find the domain of the function.
5.	Find the critical points for the function from Step 3.
	If the domain is a <u>closed interval</u> , evaluate the function at the endpoints and at each critical number to see which yields the absolute maximum or minimum.
6.	If the domain is an <u>open interval</u> , apply the critical point theorem when there is only one critical number.
	If there is <u>more than one critical number</u> , evaluate the function at the critical numbers and find the limit as the endpoints of the interval are approached to determine if an absolute maximum or minimum exists at one of the critical points.

6.3 Further Business Application

Economic Lot Size, Economic Order Quantity, Elasticity of Demand		
	Let $q = f(p)$, where q is demand at a price p. The elasticity of demand is	
	$E = -\frac{p}{q} \cdot \frac{dq}{dp}.$	
Elasticity of Demand	q ap Demand is inelastic if $E < 1$.	
	Demand is elastic if $E > 1$.	
	Demand has unit elasticity if $E = 1$.	
	R Unit elasticity $\frac{dR}{dp} = 0$ Inelastic demand $\frac{dR}{dp} > 0$ Elastic demand $\frac{dR}{dp} < 0$ Elastic $\frac{dR}{dp} < 0$ Elastic dR	
Revenue and Elasticity	 If the demand is <u>inelastic</u>, total revenue <u>increases</u> as price increases. If the demand is <u>elastic</u>, total revenue <u>decreases</u> as price increases. Total revenue is <u>maximized</u> at the price where demand has <u>unit</u> <u>elasticity</u>. 	

6.4 Implicit Differentiation

Term	Definition	
Implicit Differentiation	 To find dy/dx for an equation containing x and y: 1. Differentiate on both sides of the equation with respect to x, keeping in mind that y is assumed to be a function of x. 2. Using algebra, place all terms with dy/dx on one side of the equals sign and all terms without dy/dx on the other side. 	
	3. Factor out dy/dx , and then divide to solve	
Example	$c[(x^{n})(y^{m})' + (y^{m})(x^{n})'] = 0$ $c[(x^{n})(my^{m-1}y') + (y^{m})(nx^{n-1}x')] = 0$	Product Rule Chain Rule
	$cmx^ny^{m-1}y' + cny^mx^{n-1} = 0$	Distribute. $x' = 1$
	$cmx^n y^{m-1}y' = -cnx^{n-1}y^m$	Subtract
$\frac{d}{dx}[cx^ny^m = k]$	$y' = -\frac{cnx^{n-1}y^m}{cmx^ny^{m-1}}$	Divide
	$y' = -\frac{nx^{n-1}y^m}{mx^n y^{m-1}}$	Cancel common term (<i>c</i>)
	$y' = -\frac{n}{m}x^{n-1-n}y^{m-(m-1)}$	Bring powers to numerator
	$y' = -\frac{n}{m}x^{-1}y^1$	Simplify
	$y' = -\frac{ny}{mx}$	Cleanup negative and unit exponents

6.5 Related Rates

Term	Definition
Solving a Related Rates Problem	 Identify all given quantities, as well as the quantities to be found. Draw a sketch when possible. Write an equation relating the variables of the problem. Use implicit differentiation to find the derivative of both sides of the equation in Step 2 with respect to time (<i>t</i>).
	Solve for the derivative giving the unknown rate of change and substitute the given values.
Example	Substitute the given values. Steps to solve:
$\frac{dy}{dt} = ?$	1. Identify the known variables and rates of change. $x = 15 m$ $y = 20 m$ $x' = 2 \frac{m}{s}$ $y' = ? \frac{m}{s}$ 2. Construct an equation relating these quantities. $x^{2} + y^{2} = r^{2}$ 3. Differentiate both sides of the equation. 2xx' + 2yy' = 0 4. Solve for the desired rate of change. $y' = -\frac{x}{y} x'$ 5. Substitute the known rates of change and quantities into the
	equation. $y' = -\frac{15}{20} \cdot 2 = \frac{3}{2} \frac{m}{s}$

6.6 Differentials: Linear Approximation

Differentials	Formula	
Differentials	For a function $y = f(x)$ whose derivative exists, the differential of x , written dx , is an arbitrary real number (usually small compared with x); the differential of y , written dy , is the product of $f'(x)$ and dx , or dy = f'(x) dx or $\Delta y = f'(x) \Delta x$	
Relative Error	$\Delta y = f'(x) \Delta x$ Relative Error = $\frac{\Delta f}{f}$ in %	
Linear Approximation	Let f be a function whose derivative exists. For small nonzero values of Δx , $dy \approx \Delta y$ and $f(x + \Delta x) \approx f(x) + dy = f(x) + f'(x) dx$ or $f(x + \Delta x) \approx f(x) + \Delta y \approx f(x) + f'(x) \Delta x$	
	$f(x)$ $y + \Delta y$ $y - \frac{p}{\Delta x = dx}$ R	
Example	Solve for $\sqrt[4]{82}$ Rewrite as $f(x) = \sqrt[4]{x}$ $f(x + \Delta x) = f(81 + 1)$ $\approx f(x) + f'(x) \Delta x$ $f'(x) = \frac{1}{4} \left(x^{-\frac{3}{4}}\right) = \left(\frac{1}{4(x)^{\frac{3}{4}}}\right)$ $f'(x) = \sqrt[4]{81} + \left(\frac{1}{4(81)^{\frac{3}{4}}}\right)$ $= 3 + \left(\frac{1}{4(3)^{3}}\right)$ $= 3 + \frac{1}{108} = \frac{325}{108} \approx 3.009259$ Estimate = 3.009259 Actual = 3.009217	

7.1 Antiderivative / Integration

Rule	Formulas	
Antiderivative	If $F'(x) = f(x)$, then $F(x)$ is an antiderivative of $f(x)$.	
Notation	$\int f(x) dx = F(x) + C$	
Concept	If $F(x)$ and $G(x)$ are both antiderivatives of a function $f(x)$ on an interval, then there is a constant C such that F(x) - G(x) = C (Two antiderivatives of a function can differ only by a constant.) The arbitrary real number C is called an integration constant.	
Indefinite Integral	If $F'(x) = f(x)$, then $\int f(x) dx = F(x) + C$ for any real number C.	
Power Rule (<i>xⁿ</i>)	For any real number $n \neq -1$, $\int cx^n dx = c \frac{x^{n+1}}{n+1} + C$	
Constant Multiple Rule (<i>c</i>)	$\int c \cdot f(x) dx = c \int f(x) dx$	
Sum or Difference Rule (+, —)	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$	
Indefinite Integrals of Exponential Functions (<i>e^x</i>)	$\int e^{x} dx = e^{x} + C$ $\int e^{kx} dx = \frac{e^{kx}}{k} + C$ For $a > 0, a \neq 1$: $\int a^{x} dx = \frac{a^{x}}{\ln a} + C$ $\int a^{kx} dx = \frac{a^{kx}}{k(\ln a)} + C, k \neq 0$	
Natural Exponential Rule (e^f)	$\int ke^f dx = k \frac{e^f}{f'} + C$	
Indefinite Integral of $f(x) = x^{-1}$	$\int x^{-1} dx = \int \frac{1}{x} dx = \ln x + C$ $\int \frac{dCabin}{Cabin} = Log \ Cabin \ by \ the \ sea$	

7.2 Integral Substitution

Method	Formula		
	Each of the following forms can be integrated using the substitution $u = f(x)$.		
	Form of the Integral	Result	
Substitution	1. $\int [f(x)]^n f'(x) dx, n \neq -1$	$\int u^n dx = \frac{u^{n+1}}{n+1} + C = \frac{[f(x)]^{n+1}}{n+1} + C$	
Substitution	2. $\int \frac{f'(x)}{f(x)} dx$	$\int \frac{1}{u} dx = \ln u + C = \ln f(x) + C$	
	3. $\int e^{f(x)} f'(x) dx$	$\int e^u dx = e^u + C = e^{f(x)} + C$	
	In general there are three cases.		
	We choose <i>u</i> to be one of the following:		
	1. the quantity under a root or raised to a power;		
2. the quantity in the denominator;			
Substitution Method	3. the exponent on <i>e</i> .		
	Always capture the constant in u , such as $u = g(x) \pm c$. Remember that some integrands may need to be rearranged to fit one of these cases.		
	$u = \underline{part of f(x) (see above)}_{du = \underline{remaining part of f(x)} dx}$		

7.3 Area and the Definite Integral

Definition	Formula	
The Definite Integral	If f is defined on the interval $[a, b]$, the definite integral of f from a to b is given by $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x,$ provided the limit exists, where $\Delta x = \frac{(b-a)}{n}$ and x_i is any value of x in the <i>i</i> th interval. aka Riemann sum.	
Total Change in $F(x)$	If $f(x)$ gives the rate of change of $F(x)$ for x in $[a, b]$, then the total change in $F(x)$ as x goes from a to b is given by $\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x = \int_{a}^{b} f(x) dx.$	

7.4 The Fundamental Theorem of Calculus

Definition	Formula	
Fundamental Theorem of Calculus	Let f be continuous on the interval $[a, b]$, and let F be any antiderivative of f . Then $\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x) \Big _{a}^{b}.$	
1. Constant Multiple of a Function (<i>c</i>)	n $\int_{a}^{b} c \cdot f(x) dx = c \int_{a}^{b} f(x) dx$	
2. Sum or Difference of Functions (+, -)	$\int_{a}^{b} c \cdot f(x) dx = c \int_{a}^{b} f(x) dx$ $\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$ a	
3. Same Bounds	$\int_{a}^{a} f(x) = 0$ $\int_{a}^{b} f(x) = \int_{a}^{c} f(x) + \int_{c}^{b} f(x)$ $\int_{a}^{b} f(x) = -\int_{b}^{a} f(x)$	
4. Split Bounds	$\int_{a}^{b} f(x) = \int_{a}^{c} f(x) + \int_{c}^{b} f(x)$	
5. Swap Bounds	$\int_{a}^{b} f(x) = -\int_{b}^{a} f(x)$	
Finding Area f(x) + 12 + 4 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5	 <i>a b</i> In summary, to find the area bounded by f(x), x = a, x = b, and the x-axis, use the following steps. 1. Sketch a graph. 2. Find any x-intercepts of f(x) in [a, b]. These divide the total region into subregions. 3. The definite integral will be positive for subregions above the x-axis and negative for subregions below the x-axis. Use separate integrals to find the (positive) areas of the subregions. 4. The total area is the sum of the areas of all of the subregions. 	

7.5 The Area Between Two Curves

7.6 Numerical Integration

Source

- All highlighted formulas copied from chapters 3–7 of "<u>Calculus with Applications</u>", 11th Edition (Global Edition), by Margaret L. Lial, Raymond N. Greenwell, and Nathan P. Ritchey, Pearson, 2017.
- Used in MATH 1325 Calculus for Business, Collin College, McKinney, Texas.